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DYNAMIC PROGRAMMING AND DECISION THEORY*

D. V. LINDLEY?
Statistical Laboratory, University of Cambridge

The previous article in this issue dealt with the general prin-
ciples of Dynamic Programming. In this article Professor
Lindley shows how Dynamic Programming links up with
certain decision problems in the statistical field.

Introduction

"The subject of this paper is the contribution of dynamic programming
to some sequential statistical (or decision) problems. The first, and the
most familiar, truly sequential procedure is Wald’s? likelihood ratio
test; this was originally designed to test one simple hypothesis against
another, but is often used to deal with composite hypotheses. It is
remarkable that although Wald’s test is about twenty years old it is
almost the only sequential procedure which is known to be optimum in
some satisfactory sense (Wald and Wolfowitz®) : for example, it is not
known what is the optimum procedure for deciding between three (as
distinct from two) simple hypotheses. This is not to say that these
twenty years have not seen the introduction of useful sequential
procedures, they have; my point is that these are not known to be best
in any useful sense. In this paper I hope to show that dynamic pro-
gramming provides a computational technique for finding the optimum
sequential procedure in a wide variety of statistical situations. Examples
of useful, if not necessarily optimum, procedures are the sequential
t-test (see, for example, National Bureau of Standards®); applications
for medical purposes devised by Armitage'; and the procedures for
finding the best operating conditions, due to Box and Wilson.3 In this
paper I shall discuss, in particular, the problem of deciding whether
the unknown mean of a normal distribution of known variance is
positive or negative—a seemingly simple problem which is not com-
pletely solved. But before I do this it is necessary to make some remarks
about decision problems, particularly in reference to Bayesian ideas.

Non-sequential Decision Problems

Suppose that there is some ‘unknown’ state of nature denoted by 6.
Usually 6 will consist of a single real parameter (such as a mean or
variance) or a set of real parameters. Suppose further that it is possible
to make an observation, resulting in the value x, and that the proba-
bility distribution of the observation depends on 6 in a known way.

* Based on a paper read at a one-day conference on Dynamic Programming organised by
the Birmingham Group of the Royal Statistical Society, May 1960,
1 Present address: University College of Wales, Aberystwyth.
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40 APPLIED STATISTICS

Denote the probability density of x, given 6, by p(x|8); a known
function. So far this is the usual statistical situation. But now let =(6)
be a prior probability distribution for 6 supposed to represent the
statistician’s beliefs about 6 before making the observation. For
example, if he were asked whether 6 were positive or negative he would
say that the odds were
[ =(6)de to [ =(6)do
6>0 6<0

that it was positive. It is not the place here to discuss the need for such
a probability distribution over the states of nature; it is enough to say
that its introduction is basic to dynamic programming ideas in sequen-
tial experimentation, and that it describes our knowledge of §. No
state of nature is truly ‘unknown’ in the sense used by most contem-
porary statisticians.

Now consider what happens to our knowledge of § when the obser-
vation is made: =(0) changes according to Bayes’s theorem; the
posterior distribution of 8, given x, is

7(0]x) = p(x]6)=(0)/p(x) e (D)
where

px) = [p(x|6)=(6)de e (2)

That is, the posterior distribution of 8 is proportional to the product
of the known density of x and the prior distribution of . The constant
of proportionality is the inverse of p(x), which is itself of interest,
because it is the prior distribution of the observation before it is made.
If the statistician were asked his views about what value the observation
would assume, then he would express them through p(x). We can now
see the role that observations play: they change the distributions over
the states of nature (from prior to posterior) and, for example, it can be
shown that, on the average, the distributions become, in an obvious
intuitive sense, more concentrated; thus the distributions reflect an
average gain in knowledge, for a concentrated distribution means that
the value of 6§ is more accurately known than when the distribution has
a large spread. The appreciation of this change in the distribution of
8§ with observations is important in understanding the sequential ideas
below.

Finally suppose it is necessary to take one amongst a number of
decisions on the basis of one’s knowledge of the state of nature. If 6
were known, presumably the best decision d would be known. In
default of this knowledge it is necessary to introduce a utility function
U(d, 0) describing the utility of taking decision d when the true state
of nature is 6. For a given 6 the best decision is that which maximises
the utility U(d, 8). Now after the observation is made, when the know-
ledge of 0 is given by =(0|x), the best decision to take is that which maxi-
mises the expected utility, the expectation being taken over 8, for the true
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utility is unknown since it depends on 6. Hence take that 4 which
maximises

E,{U(d, 0)} = [U(d, O)n(6lx)d0 = U*(d,x) ....(3)

say. Had the observation not been available then #(6) would have had
to replace 7(0|x) and the expectation would have been

[U(d, )= (6)d6 = U*(d)

say. In either case we shall take the decision which maximises the
utility: with an observation this will yield m‘?.x{U*(d, x)}=0U(x), say,

whereas without it the yield will be mjx{U*(d)} =U,, say. Now U(x)

may exceed or be less than U, but on the average it exceeds U,. By
‘on the average’ here we mean an average over the possible observations
that might arise; some observations may reduce the utility but the
average effect is an increase. Now before the observation is made our
prior distribution for the observation is p(x), equation (2), so that the
average just referred to is

E{0@x)} = [ O@)p)dx =T RN C)

say. Itis easy to prove that U=U, and the difference U — U, gives the
expected gain in utility provided by the observation. The observation
is only worth making if this expected gain (which is necessarily non-
negative) exceeds the cost (measured in the same units as utility) of the
observation. An example may clarify the situation.

Example of a Non-sequential Decision Problem*

Suppose that § is the mean of a normal distribution of variance unity
and suppose that x is the mean of a random sample of # observations
from this distribution. (Any other function of the observations besides

the mean is irrelevant; in technical language the mean is sufficient.)
Then

pelt) = (35) ew [-bis-01 ...

Suppose that 7(6) is normal with mean 6, and variance 72, we write
N(6y, 7*) ; and that there are two decisions d; and d, with

Uy, 0) = ¢ }

and U(dy, 0) = ¢y +5(0—5) -+ (6)

where >0. Then if § is known, d, is the preferred decision if §>8,
otherwise d; is preferred. In other words we have to decide whether
6 is greater or less than 8, the utility of deciding that it is greater than
9 increasing linearly with 6.

* This example was discussed in an unpublished paper which I gave to the Loughborough
conference of the Royal Statistical Society in September 1959.
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The calculations in this problem are much simplified by noting the
following fact: the posterior distribution of 0 is still normal. This is a
consequence of simple calculations carried out with Bayes’s formula,
equation (1). The mean and variance of the posterior distribution, for
those who care to check the calculations, are respectively

xn -+ 00/‘7’2

e ad [l c (D)

Notice that the mean is a weighted average of x, the mean of the
observations, and 6,, the prior mean; and that the weights are, in the
usual way, inversely proportional to the variances. In other words we
can think of normal observations as changing the mean of the distri-
bution of 0 in a random way but changing the variance deterministically,
retaining a normal distribution for 6.

From this fact it is easy to verify that 4, is only taken when

x<0+ (0 —06,) [nr? ....(8)

If § =0, this means that d, is preferred only when the observed mean is
less than the critical value. But when 8+#6, the additional term
(6 - 8,) [n? appears and allows for the prior belief, decreasing as n or 72
increase. Itis also possible, using some rather more tedious calculations
(given earlier by Grundy ef al.5) to evaluate U [equation (4)] and hence
the expected value of the observations, U — U,. If the cost per obser-
vation is ¢ then n observations are worth making only if U — U,>cn. The
optimum number of observations is the value of » which maximises
U - U, — cn, the gain in utility expected from the experiment. In a sense
such a procedure for deciding the number of observations is sequential,
but it only becomes truly sequential when the observations are taken
one at a time and at each stage the experimenter decides whether or
not to take another one. To obtain the optimum procedure here in-
volves new difficulties and we now consider these.

Sequential Decision Problems

Each stage of a truly sequential problem, with observations taken
one at a time, is a decision problem of the type considered on p. 40,
with the number of decisions increased by one by including the decision
‘go on and take another observation’. The same remarks therefore
apply to sequential problems as to non-sequential ones, with the addi-
tion that the utility of this extra decision has to be found. Now it is easy
(by the methods sketched above) to find the expected utilities of
stopping and taking any particular decision, but it is not easy to find
the expected utility of taking one more observation. For the expected
utility required is that of going on and then doing the best possible from
then onwards. Consequently in order to find the best decision now (i.e.
in particular whether to go on or not) it is necessary to know the best
decision in the future. In other words the natural time order of working
from the present to the future is not of any use because the present
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optimum involves the future optimum. The only method is to work
backwards in time: from the optimum future behaviour to deduce the
optimum present behaviour, and so on back into the past. It might be
thought to be enough to consider the consequences of either stopping
or taking just one further observation and then stopping; but this is not
adequate because there are common situations in which, for example,
two observations are worth having, but one is not. The whole of the
future must be considered in deciding whether to go on.

For example in the problem of the normal mean on p. 41, where the
observations are taken one at a time in order to decide whether 6 is less
than or greater than 8, itis intuitively clear that the optimum procedure
will be a member of the following class: Let {a,}, {6} be two sequences
of constants, with @, <b,, and let x, be the mean of the first » obser-
vations; if x,,<<a,, take decision d,; if x,>b,, take decision d,; and if
a,<x,<b, go on and take a further observation. It is impossible to
determine, say, ag and bg, until the two sequences are known for n>>8;
because, until they are, the expected utility of going on when n=8
cannot be evaluated and compared with the expected utilities of stop-
ping and deciding finally whether 6 is less than or greater than 6.
Consequently we have to seek for an expression for ag and &g in terms
of the sequences for n>8. Even this is difficult, and it is here that
dynamic programming ideas help. But before considering them let me
repeat one remark made on p. 42: at any stage of the sequential pro-
cedure considered there the position may be summarised by two
quantities, the mean and the variance of the distribution of 4 at that
stage. Furthermore the variance changes deterministically whilst the
mean changes randomly according to a known probability law: thus
one observation will change N(6,, 72) into N(,, [1 +1/72]-1) where

x40y
TS

In practice it is easier to work with the inverse of the variance because
it changes additively, namely from 7—2 to 1 +7—2. The distribution of
6, for given 6, is known since the distribution, p(x), of x is known
[equation (2)].

0,

Dynamic Programming

In the previous article in this issue Dr Simpson described, in general
terms, the basic important idea behind dynamic programming. In
decision theory problems it is the idea of concentrating attention, not
on the optimum procedure itself, but on the usility expected from the
optimum procedure. Once the optimum utility has been found it is
usually a simple problem to find that procedure which produces this
utility. What we do in applying dynamic programming ideas to
decision problems is to write down an equation for the optimum utility
in the hope of solving it numerically or analytically.

The expected optimum utility at any stage is, by the discussion on
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pp- 40-41, a function of the distribution of § at that stage, and, by the re-
mark repeated at the end of the last section, this distribution depends, in
many cases, on two parameters. Let U(w, ) be the expected utility of
the best sequential scheme when starting from a situation in which the
parameters describing the distribution of 6 are w and #; w changes
randomly and ¢ deterministically. In the normal mean situation w is
the mean of the distribution of 8 and ¢ is the inverse of the variance.
Let U(w, {) be the expected utility of taking the best decision now,
without any further observations; U(w, t) is a known function. Then
U(w, ?) is either U(w, t) (if it is not worth taking further observations)
or can be evaluated in terms of the expected utility after taking a
further observation (if an observation is taken). In the latter case w
and ¢ change to, say w’ (randomly) and ¢+# (deterministically), 4 is
one in the example. Let p(w’|w, t) be the distribution of ' given w and
t: as explained above this is a known function. Lastly let c(z, ) be the
cost of increasing ¢ to ¢t +4. Then it is clear that if experimentation is
continued

Uw, t) = [U(@', t +h)p(w'|w, t)dw’ ~c(t, k) )

Consequently the basic equation of dynamic programming in this
sequential decision problem is

U(w, f) = max{U(w, ?): [U®W’, t +h)p(w'|w, )dw’ ~c(t, h)}....(10)

in which everything is known except U(w, t). If it can be solved for
U(w, t) then the optimum procedure is obvious: go on only when
U(w, t)>U(w, t); otherwise stop and take the optimum decision
obtained as in the non-sequential case. This illustrates the remark
made earlier that once the optimum utility has been found it is easy
to find the procedure which produces this utility.

The most important point to notice about equation (10) is that it is
well suited for numerical work. If U(w’, ¢ +4) is known for all w’ and
some single value of ¢+# then, from (10), it is a simple matter of
numerical integration and comparison with U(w, ?) to calculate U(w, t)
for all w and the single value ¢. In the normal example, and typically,
¢ corresponds to the sample size; hence one can work backwards in
order of decreasing sample size as explained above. If the scheme is a
truncated one, the point of truncation provides a convenient starting
point. For example, in Armitage’s medical work, it would be easy to
work out for any particular case the best truncated scheme for deciding
between three simple alternatives.

Satisfactory as the position is with regard to particular numerical
cases, the theory and analytic solution of equation (10) are practically
non-existent. I had hoped to be able to report the solution to the
normal case but it has eluded me. [In the interval between delivering
the lecture (May 1960) and writing it up for publication (September
1960) Chernoff* gave a paper in which he reached almost the same
position as myself. In a personal communication he says that he hopes
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to perform the necessary numerical calculations.] Despite this lack of
success it may be worth describing the position in that simple case.
Equation (10) involves the variable w continuously whereas the variable
¢ occurs discretely in steps of amount 4. It would simplify the situation
if the dependence on ¢ could also be continuous (on the general grounds
that differentials are easier to handle than differences). Now ¢ is the
inverse of the variance and so [from equation (7)] is equal to n +7-2.
Had each observation had variance o? instead of unity, it would have
been n/o? +772. Now allow ¢® - c0 and 7# - o in such a way that n/o?
remains constant; then ¢ can assume a continuous range of values.
What we are doing here is to say that one observation of variance unity
is equivalent to n observations each of variance » and supposing that
we are taking a large (and ultimately infinite) number of observations
each of large (and ultimately infinite) variance. The discontinuities
caused by taking an observation are therefore removed. In this limit
it is not difficult to show that the integral equation (9), which holds
whenever it is worth taking another observation, is replaced by the
familiar diffusion differential equation whose solution, in terms of the
normal density function, is well known for given boundary conditions.
Consequently in the region in the (w, ¢)-plane in which sampling con-
tinues the diffusion equation obtains for U(w, ) and outside this region
U(w, t) is equal to the known function U(w, ). Furthermore the
function U(w, t) must be continuous on the boundary between these
two regions and it is the boundary, not the function itself, that is of
principal interest. Consequently we have a free-boundary problem in
which the boundary is the main unknown. The natural way, there-
fore, to transform (10) is to derive from it an equation for the boundary.
At first this does not seem difficult, but prolonged investigation has not,
so far, enabled me to resolve the difficulties. I conjecture that the
boundary [in the (w, t)-plane] satisfies a differential equation which is
of the first order and second degree.

A general point I wish to emphasise here is that dynamic program-
ming is, at its present stage of development, a technique which is
suitable for numerical work, but that little is known about the solution
of the equations, like (10), or about the properties of the solutions. It
may sound old-fashioned in these days of fast machines to decry the
solution of particular problems by their use; but it does seem to me
that we should gain much more understanding of the problem by
solving the equation analytically rather than numerically. It is true,
in the normal case, that by transformations all the parameters can be
removed so that a single boundary would suffice for all parameters;
nevertheless a numerical solution of the differential equation—if we
knew it—would be simpler than the iteration of (10) directly.

A word may be inserted here about the origin of equation (10). The
phrase dynamic programming and the central ideas associated with it
are obviously due to Bellman? but the approach had been used earlier
in sequential decision problems by Wald.® Theorem 4.2 on page 105
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of Wald’s book is essentially our equation (10). I am indebted to Pro-
fessor Barnard for this reference.

Sufficiency*

In this section I show that the expected utility depends on two para-
meters, w and ?, w changing randomly and ¢ deterministically, in a
wide class of situations. Suppose that an observation depends on a
parameter 6 consisting of s real numbers (0y, 0, . . . 0,), with a proba-
bility density of the following form

p(x]0) = F(x)G(0) exp [ z fi(x)B,-] o (1)
i=1

i.e. a product of a function of the observation only, a function of the

parameter only, and an exponential term linear in the components 6,

of the parameter. Notice that G is determined by F since the integral

of (11) over x must be unity: conversely G determines F. If the prior

distribution of 6 is 7(0) the posterior distribution is proportional to

G(0)(6) exp [ > fi(x)O,-] ... (12)

=1

the constant of proportionality depending only on %, and being deter-
mined from the condition that the integral be unity. Now suppose 7
independent observations (#xy, X3, ...%,) from (11) are taken. The
joint density is the product of n terms like (11) and the posterior
distribution 7(0|xy, X, . . . x,,) is proportional to

G(6)"n(6) exp [ T s fi(x,)ei] el (1)
i=1 i=1

Now this distribution of 8 is characterised by (s+1) parameters: the

s coefficients of the 6, namely

w; = Zf(x;)
i=1
and 7z, the sample size. Consequently at any stage in the sequential
scheme the distribution of 6 can be described in terms of w=
(wy, s, « . . w,) and t=n. Hence the expected utility is also a function
of w and ¢. Also w changes randomly with the addition of a further
observation—in fact w,' =w; +f;(x,,,) so that it is an additive random
walk—and ¢ changes deterministically. The form (11) is that of the
exponential family, the family of distributions which possess s sufficient

statistics ”
[ % fz(x.’r):l
i=1

for any size of sample. Most common distributions belong to this
family: for example the normal, Poisson, binomial, and gamma distri-

* This section was not included in the conference paper, for lack of time, but is given here
for completeness.
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butions. (J. A. Lechner, in an unpublished Ph.D. thesis at Princeton
University, has discussed the same example as ours with the substitution
of the Poisson process for the normal one.)

The Marriage Problem

I conclude this paper with a very simple sequential decision problem
for which the basic equation can be solved very easily. It should not
be taken too seriously, and lady readers should interchange the sexes
in the text. A known number, 7, of ladies are presented to you one at
a time in a random order. After inspecting any number r (1 <r<n) of
them you are able to rank them from best to worst and this order will
not be changed if the (r+ 1)th lady is inspected; she will merely be
inserted into the order. At any stage of the ‘game’ you may either
propose to the lady then being inspected (there is no going back!), when
the game stops, or inspect the next lady; however, if you reach the last
lady you have to propose. All proposals are accepted. What is the
optimum strategy? Before this has a definite answer we must assign a
utility function: let U, be the utility of being married to the lady with
the ith true rank, so that U,=U,,;. True rank is the rank she has
amongst all » ladies, as distinct from the apparent rank that she has
when only some have been inspected. We can again argue in terms of
two co-ordinates: 7, the number of ladies inspected at any stage and s,
the apparent rank of the rth lady being inspected. Now r changes
deterministically in steps of one and s changes randomly; so 7 plays the
role of ¢ and s that of w in the above discussion.

In the notation used in our basic equation (10), ¢ is the variable
corresponding to the number of ladies inspected at any stage, here ;
w is the variable corresponding to the rank of the lady now being
inspected, here s. So U(w, ¢) is replaced by U(s,7) and U(w, t) by
U(s, ). The probability that the rth lady of apparent rank s will have
true rank S is easily calculated as

(o) G2/ Q) e

Olw,0) = O(s,7) = 3 Ussaos .. (15)

=8

say, so that

Given the situation described by 7 and s, the probability that the next
lady will have apparent rank s is clearly (r+1)-1 for all s’, so that
p(w'|w, t) in (10), now p(s’ls, ), is (r+1)~1. Hence (10) is

Us, 7) = max {U(s, 7 rg‘.lU(i,r+l)/(r+l)} ... (16)

with U(s,7) a known function given by (15). There is no cost of
inspection.
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We consider two special cases. In the first U;=1 and U;=0 for
i>1, corresponding to the attitude: nothing but the best. From (15)
U(1,7)=7/n and U(s, r) =0 for s>1. This last result means that it is
no good proposing to anyone of apparent rank other than one, for to
do so will result in zero utility. Consequently all we have to do is to
find out when it pays to propose to a lady who has apparent rank 1.
Equation (16) gives

U(l,7) = max {r/n: TG, r+1)/(r+l)} e (17)
and U, ) = T%IU(i, r+1)/(r+1) for s>1 ... (18)

Since s does not appear on the right-hand side of (18), U(s, r) must,
for s> 1, be a function only of 7, u,, say. Equations (17) and (18) may
then be written

U(1,7) = max {r/n, u,} ....(19)
1
and u, = r_-i-l{U(l’ r+1) +ru,,.q} ... (20)

respectively. Now suppose U(1, r)>U(l, r) =r/n, that is the utility of
continuing exceeds that of proposing. It follows from (19) that
U(l, 7) =4, and, from (20) with the value of 7 reduced by one, that
u,_y=u,. Therefore since u,>r[n, u,_y>(r —1)/n and from (19), again
with the value of r reduced by one, U(l, r—1)>(r—1)/n. Hence
if it is not worth proposing to a lady who is best out of 7, it is not worth
proposing to a lady who is best out of (r — 1), which result is intuitively
obvious. Hence the best strategy must be to propose to a lady who is
best out of 7, provided 7 is large enough. We have only to find out how
large r must be.

Suppose now that U(1,r) =U(1, r) =r/n; that is, it is worth pro-
posing to the best lady out of 7, and therefore U(l, ") =7'/n for all
r'=r, by what we have just proved. Equation (20) gives

B 1 r+1+
AU IR

or, if v, =u,fr, O =+

and the same equation will obtain for all larger . Adding both sides
of all these equations we have

1(1 1 1
Z)r :;{;—f—m‘*‘ “ e +m} e (21)

But we know that «, must be less than 7/n since U(1, 7) =7/n [equation
(19)1, so that v,<n~!. Hence
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1 1 1
;—+r+—1+...+n—:—1<1 .(22)

The argument may be reversed and consequently it is only worth
proposing to the apparently best lady out of r if (22) obtains. Letr=R
be the least such value; that is,

l+ ! + + ! 1 1 L L + +—~~—l
R R+l " i~ '"<r1"RTra1t taTi

then from (20) with r=R -1

gy =;e{ +(R-1)u }

_R;I{R__ 1. +ﬁ}....(23)

from (21). Again from (20) with r<<(R -1) we have u r =Urs1; 5O that
uy, the utlhty of the best strategy startlng at the begmmng, is glven by
(28). If nis large the value of R is given by dex/x_l if the series in

(22) is replaced by an integral, and hence n/R =e, the base of natural
logarithms. Hence for large n the optimum rule is to inspect until a
proportion e~ (=0-368) of the ladies have been inspected and then
propose to any subsequent lady of apparent rank one; the expected
utility is, from (23), only e~1. If, in real life, this process works between
18 and 40 (i.e. for 22 years) one should never propose until age
18 +0-368 x 22 =26, approximately. Either many people do not pursue
an optimum strategy or else they have a different utility function.

"To learn something of the effect of a change in utility we consider a
second case in which U;=n—{; that is, linear in the rank. It is a
simple matter to calculate

O(s, 7) =n—<n+1>s o (24)

r+1

and this value has to be inserted in (16). Now since U(s, r) decreases
as s increases and

EU(z,r+l)/(r+l)

i=1
in (16) does not depend on s it is clear from (16) that if it is worth
proposing to a lady of apparent rank s out of 7, it is certainly worth
proposing to one of apparent rank s’ out of 7, where s'<s; this is
intuitively obvious. So the optimum strategy can be defined by a
function s(r) with the rule: propose if and only if s<s(r); s(r) is the
boundary in the sense used on p. 45. It follows from (16), again
because

r+1
S U@, r+1)/(r+1)
=1
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does not depend on s, that Uf(s, ), for s>s(r), does not depend on s;
so let us write it # —c(r), say. From (16) we obtain the two equations

U(s, r) = max {n—(%—i) Sy n—c(r)} .... (25)
and n—c(r-1) = éU(i,r)/r ... (26)

where, in (26), the value of r has been decreased by 1. Since one will
propose to a lady of rank s(r) but not of rank s(r) +1, (25) gives

(%) [s() +1] = c(r) = (%) (1) @7
and (26) gives

cr-1) = {(’:_:.il_>’[1+2+3+ +s(r)]+[r—s(r)]c(r)}% . (28)

These two results are the most convenient form for calculation pur-
poses. But the calculations are rather tedious and, as emphasised on
p- 45, it would be highly desirable to have a result for s(r) alone.
Although it is difficult to obtain a differential equation for the boundary
in the normal case on p. 45, it is easy to do so here. Suppose 7 is large
and let x =7/n; x is then the proportion of ladies so far inspected. Allow
n to approach infinity but x remain fixed (so that also r - c0). Let
C(x) =c(r) and S(x) =s(r). Then (27) is approximately

C(x) = S(x)/x ... (29)
and (28) is approximately
c(r=1)—c(r) = {ch . %’C)P—S(x)(}(x)}—% ... (30)

(In the last result we have used the fact that the sum of the first »
natural numbers is n(n+1)/2). But c(r—1)=C(x-n1) so that,
from (30),

n{C(x —n~") - C(x)} = -3{CE)]*
or, as . — 00, dC/dx = }[C(x)]? .... (31)

The boundary condition is C(1) =c(r) =4n, and therefore the solution
to (31) is

C(x) = {2n1+3(1 -x)}* ... (32)
and therefore, from (29)
S(x) = x{2n-1+3(1 —x)} .. (33)

This approximation ignores the discrete form of s(r), but numerical
computations suggest that it is quite good. For example, with »=100
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and 7=90, so that x=0-9, S(x) =90/7, or about 13. The exact value is
14, though the change in utility by using 13 instead of 14 is negligible.
Notice that the approximation is only valid for fixed x as n gets large.
No proposals should be made until S(x) > 1, that is until x>1/3 +4/3n.
For large 7 this gives x>1/3, agreeing very well with the strategy in the
first case where the corresponding value was 0-368. C(0) =2nr/(4 +n)
so that the expected utility at the startis n —2z/(4 +n) =n(n +2)/(n +4).
This is only accurate to order 1 and to this order is (z —2), so that the
expected utility is nearly equal to that of the best lady, namely (n —1).
This approximation is, however, suspect. One could also argue that
since no proposals are to be made until ¥>1/3 +4/3z the expected
utility is constant until this inequality is first satisfied and therefore that
n—C(1/3+4/3n) is an equally good approximation to the expected
utility at the start. To order 1 this gives (n —3).* Mr B. N. Barnett
has suggested alternative approximations to the behaviour of C(x) for
small x which appear to be better, but more work remains to be done
before a completely satisfactory result can be obtained.

This problem also arises in the game of ‘googol’ mentioned in the
Scientific American for February 1960. One player writes n different, but
otherwise arbitrary, numbers on z pieces of paper and places them face
downwards on a table. His opponent turns them up one at a time and
can stop at any stage and say that the one just turned up is the biggest.
If correct he wins, otherwise he loses. The first utility function is
relevant.

* T am indebted to the Editor for this idea.
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