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 ? International Statistical Institute

 The Secretary Problem and its Extensions:
 A Review

 P.R. Freeman

 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK

 Summary

 The development of what has come to be known as the secretary problem is traced from its origins
 in the early 1960's. All published work to date on the problem and its extensions is reviewed.

 Key words: Candidate problem; Dowry problem; Dynamic programming; Googol; Hotel problem;
 Marriage problem; Optimal stopping; Secretary problem.

 1 The standard problem

 1.1 Introduction

 What I shall call the standard secretary problem is as follows. A known number of items is
 to be presented one by one in random order, all n! possible orders being equally likely.
 The observer is able at any time to rank the items that have so far been presented in order
 of desirability. As each item is presented he must either accept it, in which case the
 process stops, or reject it, when the next item in the sequence is presented and the
 observer faces the same choice as before. If the last item is presented it must be accepted.
 The observer's aim is to maximize the probability that the item he chooses is, in fact, the
 best of the n items available. We shall abbreviate this outcome to the single word 'win'.

 Since the observer is never able to go back and choose a previously-presented item
 which, in retrospect, turns out to be best, he clearly has to balance the danger of stopping
 too soon and accepting an apparently-desirable item when an even better one might be still
 to come, against that of going on too long and finding that the best item was rejected
 earlier on. The obvious application to choosing the best applicant for a job gives the
 problem its common name, although many other names, such as marriage, dowry, beauty
 contest and candidate, have been used to describe the equivalent problem in other
 contexts.

 We defer to feminine sensitivities by referring throughout to 'items' rather than
 'secretaries' but for the sake of definiteness we use the masculine pronoun for the
 observer.

 1.2 Historical note

 The origins of the secretary problem are obscure. Gilbert & Mosteller (1966) relate that
 A. Gleason posed the problem in 1955, having himself heard it from somebody else.
 Gardner (1960a, b) attributes the problem to J.H. Fox and L.G. Marnie in 1958 and gives
 a compressed account of a complete analysis of the problem by L. Moser and J.R.
 Pounder. Bissinger & Siegel (1963) posed the special case with n = 1000 and the solution
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 190 P.R. FREEMAN

 was given by Bosch (1964) and by 12 other people. The first published solution of the
 standard problem was given by Lindley (1961).
 A remarkable forerunner of this modern work was a problem posed by Cayley (1875)
 in which a sequence of values drawn independently from a known probability distribution
 is presented to the observer. It was solved for the uniform distribution by Moser (1956)
 and for general distributions by Guttman (1960). We shall return to this so-called 'full
 information' problem later.

 1.3 Solution of the standard problem

 The state of the process at any time may be described by two numbers (r, s), where r is the
 number of items so far presented and s the apparent rank of the rth, last presented item.
 If s 1 there is obviously no point in accepting the rth item as it cannot possibly be the
 best. After the next item has been presented the new state of the process will be (r + 1, s'),
 where s' is equally likely to be any one of the values 1, 2,... , r + 1. If s = 1, this item is a
 candidate for acceptance. The probability that it is in fact the best of all n items is just r/n.
 Letting V(r, s) denote the maximum expected probability of choosing the best item when
 the state of the process is (r, s), the principle of dynamic programming yields the equations

 V(r, 1) = max , 1 V(r1, s') (11)

 1 r+1

 V(r, s)= V(r+ l, s') (s=2, 3,..., r), (1.2)
 r+ls'=1

 with V(n, s) = 1 if s = 1 and 0 otherwise.
 Lindley (1961) solved these by simple backward recursion over r = n, n - 1,..., 1. If

 we define

 1 1
 a =-+ + ..+- , (1.3)

 r r+l1 n-1

 the optimal action in state (r, 1) is to stop if a, < 1 and to continue if a, > 1. Thus, if r* is

 the integer r for which a,-l > 1 > a, the optimal policy is to reject the first r* - 1 items and then to accept the first item thereafter that is better than all previous items.

 The probability of winning using this policy is (r*- 1)a,_7/n. As n -- oo, both this and r*/n -* e-1 = 0.368....
 Gilbert & Mosteller (1966) show that F = [(n -)e-1 +-] is a better approximation to r*

 than [ne-1] although the difference is never more than 1.

 1.4 Alternative solution

 Although most succeeding papers employ direct algebraic methods similar to Lindley's, a
 completely different approach due to Dynkin (1963) provides an alternative tool. This
 uses the fact that the stages r(0)= 1, r(1), r(2),... at which candidates are observed form
 a Markov chain, since

 p(r(i+1)= 1.1 r(0)= 1, r(1)= a, ..., r(i)= k)

 is just the probability that the (k + 1)th, (k +2)th,..., (1- 1)th items are less desirable than
 the kth and the lth item is mote desirable, and so does not depend on r(0),...,r(i-1).
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 The secretary problem and its extensions: A review 191

 In fact

 p(r(i)= k and r(i + 1)= 1)
 Pkl= p(r(i + 1) = 1I r(i) = k) (r(i) = k and r(i + 1) = p(r(i) = k)

 1/1(1- 1)
 (lk k <<1 n)

 1/k

 since the numerator is the probability that the kth and Ith items are the second-best and
 best of the first 1 items. At r(i) = k, the probability of winning if observation stops is k/n,
 while if observation continues until r(i + 1) and then stops the probability is

 n 1k
 YPkl = - ak.

 I=k+l n n

 The one-step-ahead rule compares these probabilities and is, in fact, optimal since the
 conditions for the monotone case of Chow, Robbins & Siegmund (1971) are satisfied.
 Note, however, that it is necessary to look ahead from one relatively best item to the next,
 since the one-item-ahead policy is clearly suboptimal.

 1.5 Rank of accepted item

 Bartoszynski (1974) elegantly obtains a combinatorial identity by calculating the maximal
 probability of winning in two different ways, and then shows that if one of the first n- 1
 items is selected by the optimal policy, the probability that its true rank is t is given by

 (n n-r*+2 fn-i
 p(t)= (n ) {(r*-)/(i-1)} (t=1,... , n-r*+ 1),

 which decreases as t increases.

 2 Simple extensions

 A few extensions to the standard problem turn out to be quite easy to solve. The basic
 characteristics of finite n, a single choice and the goal of maximizing the probability of
 winning remain unchanged.

 2.1 Uncertain employment and recall

 Smith (1975) introduced the possibility that any item, if accepted, has some probability of
 not being available, in which case it has to be passed over and the next item observed.

 Yang (1974) allowed the observer at any stage to go back and try to accept an item
 which had been previously rejected. If it is available it is accepted but otherwise it remains
 unavailable ever after and the observer must continue inspecting new items.

 These two possibilities were allowed simultaneously by Petrucelli (1981).
 The state of the process is again described by (r, s), but s now denotes the number of

 items before the rth at which the best item so far was seen. If that best item has already
 been found to be unavailable, s is set to oo. It is clearly only necessary to consider
 soliciting the best item so far. If this is done, the probability that it is available is q(s),
 where q(oo)=0 and q(0)< 1.

 The dynamic programming equation is now

 V(r, s) =max q (s)+ V(r, oo)(1 - q(s)), V(r + 1, 0) + r V(r+ 1 s+ 1), (2.1)
 'n r r+1
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 192 P.R. FREEMAN

 where the first term corresponds to trying to accept the best item so far and the second to
 observing the next item. Boundary conditions are

 1 r
 V(n, s) = q(s), V(r, oo) = V(r + 1, O)+ V(r+ 1, o).

 r+l r+l

 Petrucelli proves three general properties of the optimal policy and gives explicit
 solutions for two important special cases:
 Case 1: q(O)= q, q(s)= p for s = 1, 2,..., n, where 0 < p <q. Here the optimal policy
 takes the form 'reject the first r*- 1 items; try to accept all items with apparent rank 1
 observed thereafter; if all n items have been observed and the actual best was in the first
 r* - 1 items, go back and try to accept it', where r* is the smallest integer r such that

 n- (1+ -q)q -p( 1-q)
 k=r k q

 As n -- oo, r*/n -- V, where

 V=[ q2 (1-q)- q - p(1 - q)

 and the maximum probability of winning tends to V{q - p(1 - q)}/q.
 Case 2: q(r)= qp'. Here items become increasingly likely to be unavailable the further

 back in the sequence they lie, so the observer cannot afford the luxury of waiting until he
 has seen all n items before making his recall unless p is very close to 1. The form of the
 optimal policy is now as follows.
 'If q/(1 - p)< n - 1, observe the first r* items, then try to accept the best of them; if this

 is not available, continue and try to accept all items with apparent rank 1 observed
 thereafter. If q(1 - p)> n - 1 observe all n items and then try to accept the best.'

 Explicit formulae are again given for r* and for the probability of winning. These both

 tend to q(-1 as n -- m, the same value as in special case 1 above with p =0, so
 asymptotically the recall facility confers no advantage.

 These two examples are explicitly soluble because the optimal policy involves use of
 recall at most once.

 A similar version of recall was considered by Smith & Deely (1975) in which any one of
 the last m items observed can be accepted (they are certain to be available). The process
 must, however, stop when the observer chooses this option and this has the effect of
 deleting the expression V(r, oo)(1-q(s)) from (2.1). The observer clearly need only
 consider stopping when s = m - 1, that is when the best item so far is about to become
 unavailable. As with previous policies, the first r* items should be rejected. It is not
 possible to get a closed expression for this, but an algorithm for finding it and the
 maximum probability of winning is given. If m/n = a >: then r* = m and the probability
 of winning is

 m

 V(1, 1) = 2---- am, n

 which tends to 2- a -log a as n -- 00, while if m is fixed then r*/n and V(1, 1) both tend
 to e-', giving no asymptotic advantage over the standard no recall problem.

 2.2 Discounting

 Rasmussen & Pliska (1976) introduce a discount factor d, so the expected 'gain' from
 stopping in state (r, 1) is now d'(r/n). With this modification to (1.1) the analysis goes
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 through giving an optimal policy of the same form, but with r* now the smallest integer r
 such that

 n-1

 E dk+l-r/k t 1. k=r

 As n -- c>, r* increases to a finite upper limit r**(d) <(1- d)-1 and, as d -* 1, r**(d)
 itself increases to oc. It can be closely approximated by -0.4348/log d when d is close to 1.
 The optimal expected gain now tends to 0 as n --* , in marked contrast to that of the
 standard problem. The discount factor forces the observer to stop earlier than he
 otherwise would and when n is large this gives him very little chance of getting the best
 item.

 3 Minimizing the expected rank of the accepted item

 The objection to the goal of maximizing the probability of accepting the best item is that
 this implies a utility function that takes the value 1 if the best item is accepted and 0
 otherwise. Lindley aptly names this the goal of 'nothing but the best'. A more realistic
 utility function is the one that takes the value n - i when the ith best item is accepted.
 Maximizing expected utility then corresponds to minimizing expected rank of the accepted
 item.

 If the observer chooses to stop in state (r, s) and accept the item that is sth best out of
 the first r items, the probability that its true rank out of all n items is i is

 pi,n(r,s)=i-1)(n-)/() (i= s, s +1,..., n+s-r), (3.1)
 so that the expected utility is

 n+s-r n + 1
 U(r, s)= E (n - i)pi,n (r, s) = n - s. (3.2) i=s r+1

 The dynamic programming equations corresponding to (1.1) and (1.2) are

 V(r, s) = max U(r, s), 1 V(r + 1, s') V(n, s) = n - s. (3.3)
 r+1s'=1

 Since the first term is a decreasing function of s while the second is independent of s, the
 optimal policy is of the form 'for each r, stop and accept the latest item if its apparent rank

 s < s*(r), continue if s > s*(r)'.
 The solution is due to Lindley (1961) who gave a recurrence equation by which s*(r)

 may be calculated. He tried approximating this by a differential equation in x = r/n as
 n --) , but was unable to make this accurate enough to yield useful results.

 It was Chow et al. (1964) who first showed that, as n -- ,

 V, = V(0, 0)= V(1, 1)--i Hi = 3.8695

 and that V, is in fact an increasing function of n.
 They obtained these results by direct methods since, although they too had a heuristic

 argument involving approximation of difference by differential equations, they had not
 been able to make it rigorous.
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 4 General utility function

 The two preceding sections are simple special cases of the problem in which the observer
 received UL units of utility (or payoff) if the accepted item is the ith best. It seems
 common-sense to assume that U, is nonincreasing in i, and the form of the optimal policy
 in this case was first given by Mucci (1973a). If the observer accepts the rth item whose
 apparent rank is s, his expected utility is

 n+s-r

 O(r, s)= Y U,p,n(r, s). i=s

 Since this is decreasing in s, substituting it for U(r, s) in (3.3) gives the same kind of
 optimal policy as before. Moreover, Q(r, s) is decreasing in r so that the critical numbers
 s*(r) must increase with r. Another way of describing the optimal policy is therefore to
 define an increasing sequence of numbers rI ? r2 '<... r,n such that s*(r) = i if and only if
 ri < r ~ ri+1. One should, therefore, stop when in state (r, s) only if r > r,. The first r, items

 are thus rejected, the relatively best is accepted if one such appears between the (rl + 1)th and the r2th items, the relatively best or second-best between the (r2+ 1)th and the r3th
 items, and so on.
 This optimal policy had been found for the special case

 UU = U2=...= = , Uk+=...= Un=O
 (that is, choice of any one of the k best items is called a win) by Gusein-Zade (1966). He
 showed that for k = 2 the optimal expected utility tends to 24 - 42 =0.574 as n ->oo
 where =0.347 is the root of the equation 4-log 4 = 1-log . Also s*(r)<l1 while
 r/n < 4, and s*(r)= 1 while 4 <r/n <2, so rl/n - and r2/n -~ as n -oo. These same
 results for k = 2 were given independently by Gilbert & Mosteller (1966). Bartoszynski
 (1976) again obtains a combinatorial identity by calculating the probability of winning in
 two different ways when k = 2.
 For general k, Gusein-Zade showed that the limiting (as n -- c-) optimal expected utility

 tends to 1 as k ->* at least as fast as 1- k-1 log k. Frank & Samuels (1980) computed the
 utilities for k = 1 to 25 and these strongly suggested exponentially fast convergence. Note
 that these had previously been computed for k up to 10 by Rasmussen (1972). They were
 indeed able to prove this, showing that for any k the optimal expected utility is
 1-[1- ti(k)]k, where t1(k) is the limiting value of r1/n as n -> 00 for that value of k. Even

 more surprisingly, they showed that for any fixed j, as k -> o,

 lim (ri - rl)/n -> 0,
 n--*oo

 so that for large k the limiting optimal policy as n - oo stops very soon after r, items have
 been observed. Two open problems remain. Does t1(k) decrease monotonically to its limit
 as k -- c? Is ti(k)= lim riln as n - oo monotonic decreasing with k?
 The other achievement of Mucci (1973a) was finally to rigorously derive the limiting

 differential equation form of the dynamic programming equation. Starting from

 V(r, s)= max Q(r,s), 1 V(r + 1, s V(n, s)= Us, r+1 =r+l

 and writing

 8 T s'=1
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 we have

 f( - fr 1 - nQ(r, s') - fn ,
 Sn rST s'=l n

 where x = max (x, 0). Letting n - oo we obtain the limit

 100

 f'(x)=- {Rs,(x) - f (x)}, f(1)=0, (4.1) X s'=1

 where

 RS(x) Us 1xS(1-x) -S. (4.2)
 The optimal expected utility V(0, 0) = f,(0) satisfies

 I V(0, 0)- f(0)l < 10n- 'log n + 30 U[c log n],

 where c is a given constant, and the numbers rl < r2 -... < r,n that determine the optimal
 policy are indicated, for large n, by the limits

 xi = lim riln,
 n --oo

 where the x, are uniquely determined by R,(x,) = f(x,).
 In a further paper, Mucci (1973b) allowed the utilities to form an unbounded decreas-

 ing sequence, corresponding to acceptance of poor items being positively harmful. He
 showed that so long as the utilities decrease no faster than a polynomial of finite order,
 the optimal expected utility remains finite as n ---> oo.

 5 Unknown number of items

 If n is unknown, the observer faces an additional risk. If he rejects any item, he may then
 discover it was the last one, in which case he receives nothing at all.

 5.1 Known prior distribution

 Letting N denote the unknown true number of items, it is assumed that pi = p(N= i)
 (i = 1, 2,...) are known to the observer. Write

 Irk= p(N I> k)= Y, p. i=k

 Presman & Sonin (1972) provided a treatment of the standard problem, using the
 Dynkin approach. The transition probabilities of the imbedded Markov chain are

 Ii=k I r kV

 where the absorbing state 'c' has to be introduced to cover the possibility that k C N< 1.
 In this case, the kth item is the actual best, and the probability of this, given that it is
 relatively best, is just p(k, c).
 The one-step-ahead policy is no longer optimal, and the optimal policy is no longer
 simple. The set F of states k at which it is optimal to stop may be thought of, trivially, as a
 succession of 'islands' separated by a sea of continuation states. The key to the form of F
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 196 P.R. FREEMAN

 is held by the numbers

 i=k j j=i+1 i =k

 say. If there is some k* such that Ck > 0 for all k > k*, then all states from k* to 0c belong
 to F and the optimal policy consists of a finite number of islands only. Moreover if the {dj}
 sequence changes sign from - to + No times, then F has no more than No islands. For
 three special cases, where N is uniform, geometric or Poisson, the d's change sign exactly
 once so the optimal policy returns to its standard form. For the uniform distribution from
 1 to n, the single cutoff value k*- ne-2 and p(win)- 2e-2 = 0.2707... as n -- oo.
 Gianini-Pettitt (1979) considered the expected rank problem. She showed that the

 optimal policy is still as in ? 3 above, but {s*(r)} need no longer be an increasing sequence.
 When n is known, the minimum expected rank is an increasing function of n, but for two
 variables N and N' with N stochastically smaller than N' it does not necessarily follow
 that the minimum expected rank for the N problem is less than that for N'.

 For the particular family of priors

 p(N= i N> i)=(n-i+1)-O (i=1,2 ..., n)
 in which a- 1 gives the uniform distribution, it was shown that the limiting minimum
 expected rank is o if a <2 and the Chow et al. (1971) limit 3.8695 if a > 2 so that not
 knowing N is asymptotically no disadvantage. When a = 2 the lim inf is some number
 greater than 3.8695. Within this family it remains an open question whether the minimum
 expected rank is an increasing function of n.
 Two papers in this area, Rasmussen (1975) and Rasmussen & Robbins (1975) are

 wrong, and presumably published in ignorance of Presman & Sonin (1972). Irle (1980)
 gives a counter-example and goes on to introduce a third basic approach to solving the
 secretary problem, derived by Rasch (1975) from Howard's policy iteration method. If we
 use a discount factor d as in ? 2.2, numbers similar to (5.1)

 Ck (d) = i, pi d * - /i
 are defined and conditions on them are given that cause the iteration to converge at the
 2nd, 3rd or 4th cycle, together with the corresponding optimal policies.

 5.2 Admissible policies

 Abdel-Hamid, Bather & Trustrum (1982) are concerned with the relation between Bayes
 policies as found by Presman & Sonin and those a non-Bayesian might consider by
 treating N as an unknown parameter, thereby pursuing the close analogy with standard
 ideas in decision theory. They define a randomized policy II that accepts the rth item, if it
 is a candidate, with probability q,. The probability that all of the first r items will be
 rejected is therefore

 U(I)= (1- q1)(1-q2). . (1- )

 and if N= n the probability of winning with this policy is

 1n

 Vn(-I) = 1 U (). n r=l
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 The policy H is then admissible if there exists no other policy I' such that V,(I') > V,(HI)
 for all n > 1 with strict inequality for at least one n.

 The paper's key result is that [I is admissible if and only if U,(I) -> 0 as r ->o. In terms

 of the q's an equivalent condition is that either q, = 1 or q, <1 and , qr diverges. If now N has a prior distribution as above, generically denoted by p, the expected
 probability of winning with policy I is

 A(p, n) = p. V.(1)
 n=l

 and the Bayes reward is

 B(p) = sup A (p, I).
 n

 By taking the proper prior

 c/(n+1) (1ni? m- 1),
 Pm(N=n)= c (n = m),

 O (n > m),

 with c = (I i-')-1, where the sum is over i = 1,... , m, it is easy to show that

 inf B(p) = 0,
 p

 but by adding the single improper prior obtained by fixing c > 0 and letting m * oo to the
 class of all proper priors, the extended Bayes policies now constitute the whole family of
 admissible policies. This follows by first establishing the fact that I is an extended Bayes
 policy if and only if U,() ---> 0.

 5.3 Random arrivals

 Another way in which the number of items may be unknown is if they are presented at the
 time points of a Poisson process of known rate A and the observer must make his choice
 before some fixed time T. His decision on any item will now be heavily influenced by how
 much time t he has left for choosing later items.

 Karlin (1962) and Sakaguchi (1976) first considered such problems, but only treated the
 'full-information' case, see ? 9. Cowan & Zabczyk (1978), using the Dynkin approach,
 define a homogeneous Markov process {X,} with X, = (r, t) meaning that the rth item is
 observed at time T- t and is the nth candidate. The one-step-ahead policy is again
 optimal and tells the observer to stop at the first candidate for which At M x(r), where x(r)
 is the unique solution of

 0 Xn 00 Xn n 1

 ,-O n! (r+n) ,=1 n! (r+n) k=1 k+r-1
 A table of these values is given for r up to 45.
 Stewart (1981) takes a different formulation in which an unknown number of N items

 arrive at times which are all independently exponentially distributed with known mean

 1/A. Given a prior distribution po(n)= p(N= n), the arrival times tl,..., t, of the first r items provide information about N and lead to a 'current distribution'

 P,(n I tl, ..., t,)= p(N= n i T = t, . . . , TI, = t,)

 via Bayes theorem.
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 Taking the prior to be uniform over n = 0, 1,... , M and then letting M - oo yields the
 posterior

 p,(n I t, ... t4)= r {1-exp(-At,)}r+exp r-(n-r)At,} (n r),
 0 (n<r),

 depending only on t,. The state of the process has to be (r, s, t,) and the dynamic
 programming equation becomes

 V(r, s, tr) = max [ENIt, (r/n), Es,.+,,T+lIr,s,,{ V(r+ 1, sr1, t,+1)}]
 since the rank s+ 1 of the (r+ 1)th item, and the time t,+1 at which it will be presented, now
 depend on N. They do not, however, depend on the ordering of the first r items so the
 second term is independent of s. The first term is 1- e-X' if s, = 1 and 0 otherwise, from
 which it follows that the optimal policy is to accept the first item for which s, = 1 and
 t, > T*=0.4587/A. This has close affinities with the standard problem, in that given
 N = n, the expected number of items arriving before time 7-*, and hence automatically
 rejected, is n/e and the probability of winning again tends to 1/e as n ---oo. If A is
 unknown, then using any value A within a factor of 2 of the true value still keeps the
 probability of winning larger than 0.3.

 6 More than one choice

 Once the observer is allowed to accept more than one item, many possible problems
 suggest themselves. Gilbert & Mosteller (1966) first solved some of them and their
 cornucopia of interesting results stimulated much further work.

 6.1 k choices, win if any of them is the best

 Sakaguchi (1978) gave a simpler derivation of Gilbert & Mosteller's results by using
 Dynkin's approach and showing the one-step-ahead policy is optimal. We define state
 (r, s) to mean the rth item is observed, is a candidate and the observer still has s choices to
 make. Absorbing states (oo, s) meaning the nth item has been observed and is not a
 candidate, and (oo, 0) meaning all k choices have been made, have to be added. Transition
 probabilities from state (r, s) if the observer accepts are rlj(j - 1) to state (j, s - 1) and r/n
 to state (oo, s - 1), while if the observer rejects the same probabilities lead to state (j, s)
 and (oo, s) respectively. The dynamic programming equation is

 V(r, s)= max -[+ 1 ( V(j, s- 1), j V(j, s) In =r+1i(j-1) i=r+i (j-1) '
 and the one step ahead policy can be evaluated by considering s = 1, 2,.... successively.
 These determine a set of numbers r <- r_1 ... < r* < r* such that the observer makes his (k-s + 1)th choice at the first candidate to appear after item r* - 1. The value of r* is,
 of course, that for the standard problem, while r*/n 1 e-2/3 = 0.2231. Gilbert & Mosteller
 give numerical results up to k = 8 and show that the much simpler policy of accepting the
 first k candidates to appear after item r*- 1, with r* chosen optimally, is very nearly as
 good as the optimal policy.

 6.2 k choices, minimize sum of actual ranks

 Henke (1970) showed that the rth item should be accepted, when j items have already
 been accepted, only if its relative rank s <sTi and gave a system of recurrence equations
 that determine these critical values.
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 6.3 Two choices, win if they are best and second best

 This problem was solved, apparently independently, by Nikolaev (1977) and more
 explicitly by Tamaki (1979a). The optimal policy says choose the first two candidates to
 appear after the first r* - 1 items or, as second choice, the first item with apparent rank 2
 to appear after the first r*- 1 items. Formulae are given for r*, r and the probability of
 winning. As n -- >, r*/n -- 0.2291, r*ln -e-3 = 0.6065, p(win) -- 0.2254.

 Sakaguchi (1979) generalizes slightly by supposing that each item has probability q of
 being available if chosen, as in ? 2.1. The form of the optimal policy remains unchanged,
 but now r*/n --> , the unique root of a rather complicated equation in q, and r*/n - =
 q 1/2(1-q)} as n -- co. The probability of winning tends to

 0  (242-q _ q2-q),
 2-q

 a smaller value than Smith (1975) found for the equivalent one-choice problem.

 6.4 Two choices, win if either is best or second best

 Tamaki (1979b) solved this rather more favourable problem using the usual recursive
 dynamic programming approach. The optimal policy is again sensible, in that with two
 choices to makee the observer should accept the rth item provided r > r* if its relative rank
 s = 1 and r r* if s = 2, while with one choice left to make, the initial values are some
 other numbers ij*, r**. The latter values were again found earlier by Gilbert & Mosteller.
 Limiting values as n -- * are given, and the probability of winning tends to 0.7934.

 7 The infinite problem

 We have already described many asymptotic results as n -- oo. In a sense, then, we have
 the 'infinite solution' as the limit of finite solutions, but have not yet mentioned the
 infinite problem for which this is the optimal policy. Gianini & Samuels (1976) provided
 the answer.

 7.1 Limits of finite problem

 The statement 'n items are presented in random order' does not immediately suggest a
 limiting problem, but the equivalent statement 'each item is equally likely to be presented
 first, second, third, etc.' is more helpful. We therefore let z, denote the time at which the

 ith best item is presented, and suppose that {zl}, for i = 1, 2,...., are independently
 uniformly distributed in the interval [0, 1]. Accepting an item of true rank i yields utility
 U1, with {UJ} a decreasing sequence. The maximum expected utility f(t) of the optimal
 policy from time t onwards satisfies Mucci's differential equation (4.1) so that, when

 V= lim f(t)
 t o

 is finite, the optimal policy chooses times 0<tl t2 <... < 1 and accepts the first item
 presented in the time interval [ta, ts+1) that has relative rank of s or better. If u = lim U1

 as i -- c is finite then V is finite and f(t) is the unique bounded solution of the left-hand
 equation (4.1) with the boundary condition f(1)= u. If the {(U} decrease like a power of i
 then V is finite and f(t) is finite for all t <1 but tends to c as t ' 1.

 Lorenzen (1978) generalizes the infinite problem by allowing the expected utility of
 stopping at time t and accepting an item of relative rank s to be any function As(t), rather
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 than the particular function R@(t) of (4.2). The only restrictions are: A(O) = A2(0)
 Ao(0+), Ai(t) Ai+1(t) for all i, and Ai(t) is continuous and finite on some interval (bi, 1).
 An example might be where h(t) denotes a cost of observing items up to time t, so that
 Ai (t) = Ri (t)- h(t).
 The same differential equation holds and the optimal rule can again be stated in the
 form 'stop at time t if the item then presented has relative rank s satisfying As(t) ~f(t)'.
 This no longer gives a simple cut-off rule, but an island rule analogous to ? 5.1, since A, (t)
 is now not necessarily decreasing in t. For example, with U1 = 1, U2= U3...= 0 and
 sampling cost

 h(t)_=0 (0~ t ~l), 1-e-1 (< t< 1),
 the optimal policy accepts the first candidate to appear in either of the intervals [e-1, 4) or
 [l/e, 1] and to reject all items at other times.

 Lorenzen was able to show that the maximum expected utility for the finite problem
 tends to that for the infinite problem provided {As(.)} is an equicontinuous family, but
 whether it does so for completely general As(.) remains unknown.

 7.2 Partial recall with full or finite memory

 Gianini (1977) introduces the following interesting discretization of the infinite problem
 that allows the observer a certain amount of recall of past items. It also neatly imbeds
 the finite problem in the infinite one.

 Suppose the interval [0, 1] is divided into n equal subintervals

 (k -1 k] (k = 1, 2,5... . n).
 At the end of each subinterval the observer must choose either to stop and accept the best
 item presented in that subinterval or to continue until the end of the next subinterval. This
 choice may be based on the full memory of the relative ranks of all items presented by
 that time. It again happens that the optimal policy is of the cut-off form 'At time k/n stop
 if the relative rank s of the best item in the previous subinterval is less than or equal to
 Sk'. The value sk is the smallest s such that Rs(k/n)>v(n, k), where Rs(.) is given by (4.2)
 and v(n, k) is defined by recurrence relations

 v(n, k- 1) 1= - max Ri(- ), v (n, k) , v(n, n- 1)= U i= i=1 n 1jU
 The maximum expected utility of this policy v(n, 0) V for the infinite problem.
 Now suppose the observer is further constrained in that his decision to stop or continue
 can be based not on all the items he has seen but only on the relatively best items in each
 of the preceding subintervals. Let Tk be the time at which the relatively best item in the

 subinterval ((k - 1)/n, k/n] is presented, Yl(k) the relative rank of that item among the
 first k relatively best items, i.e. those presented at times T, ...., Tk, X1(k) the absolute
 rank of that item among the n relatively best items, and Y2(k), X2(k) the relative and
 absolute ranks of that item among all items, not just the relatively best ones. We seek a

 stopping rule 7- to maximize the expected value of Ux2(T) over all rules that depend only
 on the values of the Y1's.

 Now if OQ is the absolute rank among all items of the item that is ith best of the n
 relatively best items, we have

 X2(k)= OQx,(k-
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 This problem, therefore, reduces to a finite secretary problem with utility function

 U,(k) = E[Uok], since the properties of the random variables Q, ... .Q,, enable one to
 prove

 E[ UX2()] = E[ U,(X,(T))].

 The minimal expected cost does not exceed those for the standard finite problem and
 for the full memory discretized problem.

 8 Miscellaneous variations

 We collect together in this section papers which do not fit into any of the preceding
 categories.

 8.1 Limited recall, minimum expected rank

 Goldys (1978) allows the observer to accept the most recently presented item or the one
 before it. Govindarajulu (1975) had previously shown that the optimal policy says stop at
 the rth item if either

 s, : min ((r + 1)c/(n + 1), sr-1)
 or

 sr- l- min ((r + 1)c,/(n + 1), s, - 1),

 where sr_-, s, denote the apparent ranks of the (r - 1)th and rth items. He gave the
 necessary recurrence relations for the {c)}. Goldys extends the method of Chow et al.

 (1964) to show that as n --- the minimum expected rank tends to
 h(j+12/(2i +1)

  - 2.57.
 8.2 Play against an opponent

 Gilbert & Mosteller (1966) considered the standard problem in which the observer plays
 against an opponent who is allowed to choose the order in which the items are presented
 so as to try to minimize the observer's probability of winning. If the opponent has a
 completely free choice of order, he should choose at random any line from the cyclic n x n
 Latin square, since this reduces the probability of winning to the minimum possible value
 of 1/n whatever strategy the observer uses. Suppose, however, the opponent is only
 allowed to choose the position of the best item in the order, the remaining items being
 equally likely to be in any one of the (n - 1)! possible orders. If the best item is placed in
 position r, call this strategy T, and denote by T the randomized strategy that chooses T,
 with probability p,.

 Suppose further that the observer can only use strategies like S, 'ignore the first i items,
 choose the first relatively best item thereafter'. Denote by S the strategy that chooses Si
 with probability tr,. Now if the observer uses strategy S1 and the opponent uses T,, the
 probability of winning is 0 if i > r and i/(r- 1) if i < r, since this is the probability that the
 best item out of the first r - 1 items comes in the first i. The probability of winning using
 strategy S, is therefore

 r=i+l r- 1
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 The opponent will naturally choose his {p,} so as to make this the same for all i, giving

 p,r= K/r and p, = K, where

 I n-1 1 K={1+ }.

 The probability of winning is then K.
 Similarly, if the opponent uses T, and the observer uses S his probability of winning is

 r-1

 i= r-l1

 He naturally chooses his {rIv} to make this the same for all r, giving Mo = K, Ki = K/i (i = 1, 2,..., n- 1) and the probability of winning is again K. This is therefore the true
 minimax solution of the two-person game. For large n the value of the game is
 asymptotically {1 + y + log (n - 1)}-1, where y is Euler's constant. This therefore tends to 0
 as n - 00 in constrast with the standard problem.

 Gilbert & Mosteller repeat this analysis for the more complex case when the observer is
 allowed two choices. They once again find the minimax solution and show that the value
 of the game is

 ( - 1 ) n-2 1 n-1 j=2
 roughly double what it was before.

 Chow et al. (1964) consider trying to minimize the expected rank of the accepted item
 when the order in which the items are presented is chosen by an opponent who is trying to
 maximize the rank of the item the observer accepts. By choosing a number r at random
 between 1 and n and then accepting the rth item, the observer can achieve an expected
 rank n-1 Z r = 1(n + 1), where the sum is over r = 1,... , n, whatever order the opponent
 chooses. They show, remarkably, that the opponent has a strategy that can prevent the
 observer from doing any better than this however hard he tries. This consists of, for each

 item presented, choosing either the best or the worst item, each with probability ?, out of
 those items that have not been presented so far. This is best illustrated by Fig. 1, where
 the numbers denote xi, the true rank of the ith item presented.

 If y, denotes the apparent rank of the ith item and zi is defined by

 zi = E(J1 I y1... Yi),

 it is easy to see that {zi} forms a martingale. Thus, for any stopping time 7, E(z,) = E(z) =
 (n + 1).

 Irle & Schmitz (1979) allow general nonincreasing utilities as in ? 4 and discounting as

 4

 3 n

 2 n 3

 n 2 n-1

 n 1 n-1 2

 n-1 1 n-2

 n-2 1

 n-3

 Figure 1. Tree diagram showing true ranks of items presented by opponent using optimal strategy
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 in ? 2.2. The game of observer versus opponent again has a minimax solution with values
 Ei Ui/Ci d-j, where the sums are over j = 1,... , n. The observer's best strategy is to accept
 the rth item with probability d-'TIZ d-' and the opponent presents items just as in Fig. 1,
 but not now with equal probabilities to each branch.

 8.3 Finite memory

 Rubin & Samuels (1977) consider problems in which the observer is only allowed to
 remember just one of the previously presented items. That is, the only thing he can
 observe about a current item is whether it is better or worse than the previously
 remembered one. One motivation is that, for the standard finite problem, the optimal
 policy is just such a finite memory one, since it is only necessary to remember the best
 item seen so far.

 For each item, the observer now has three choices; to accept it and stop, to reject it, or
 to remember it and forget the previously remembered one. His optimal policy can be
 described by a sequence of choices {W,/B,; r = 2, 3,..., n - 1}, where W, and B, denote
 any of accept, reject or remember, W, being the choice if the rth item is worse than the
 previously remembered one and B, the choice if it is better. For the standard problem, for
 example, the optimal policy is

 /B reject/remember (r : r*),
 reject/accept (r > r*).

 For the finite problem minimizing the expected rank, Rubin & Samuels find the optimal
 finite memory policy among the class that only includes three out of the nine possible
 choices, adding remember/remember to the above two.

 This is of the form

 reject/remember (r < an),
 reject/accept (a, , r < rn),

 remember/remember (r = rn), W'_-r/B', (r> rn),
 where {W'/B'; i = 1,..., n - r,} is the optimal policy for the same problem with n - r,+ 1
 items. Recursive equations exist for finding a, and r,.

 Turning to the infinite problem, the remarkable result is that the minimal expected rank
 of the accepted item remains finite even with the finite memory constraint. Consider only
 the class of policies that choose numbers

 0= Ro < A, < R, < ... < Ak <Rk < ... <1

 and alternately remembers the best item in each (Rk-1, Ak) and then accepts the first item
 in (Ak, Rk) better than the remembered one. The minimal expected rank is 7.41 and the
 best values of the A's and R's are

 Rk+l = Rk + R1(1- R1)k, Ak+l = Rk + pRI(1- R)k,

 where R1 = 0.456 and p = 0.296.
 Even stronger, the expected loss remains finite when the loss function q(k) increases as

 a power of k.
 There remain many unsolved problems here. The nature of truly optimal policies for

 both finite and infinite problems is still unknown. The extension to problems that permit
 remembering m previously presented items is also unexplored.
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 8.4 Observation cost

 Lorenzen (1978) first changed the utility function to allow the cost of each observation, a
 problem which he pursued further (Lorenzen, 1981). He allowed general nonincreasing
 utilities as in ? 4 with finite U = lim U, as i -- o0, and defined h, (r) as the cost of observing
 the first r items out of n. Two possible assumptions about cost were explored:

 (a) define a bounded nondecreasing sequence {h(i)} for i = 1, 2,..., and for finite n
 let h,(i)= h(i) (i = 1,..., n);

 (b) define an increasing function h(.) on [0, 1] and for finite n let h,(i)= h(i/n).

 Thus, for (a), increasing n merely adds extra numbers to the h,(i) set, while for (b) it
 decreases all previous h,(i) as well.

 The solution to (a) turns out to be trivial. It is optimal either to accept the first item,
 gaining U- h(1) or to use the optimal policy without observation costs.

 For (b) a Mucci-style analysis leads as n --oo to the differential equation

 f'(x) --1 [R(x)+ h(x)- f(x)]', f(1)= U- h(1),
 X s=1

 and its corresponding solution. This equation also governs the appropriate modification of
 Gianini & Samuels' infinite problem, and the maximum expected utility again is f(0). The
 optimal policy is, in general, an island rule, and it was shown that if

 Ws (x)=1 Z [Rs+l,(x)-Ri(x)]-h'(x) X i=1

 has at most one sign change from + to - for each s, then there is a single island,
 returning us to a simple cut-off rule.

 Bartoszynski & Govindarajulu (1978) obtain explicit results for a special case of the
 above with U1 = a, U2= b, U3 = ... =0.

 8.5 Sampling from an urn

 Chen & Starr (1980) consider an urn containing balls labelled 1 to n which are sampled
 without replacement. If the observer stops after drawing the rth ball, he receives utility
 f(r, m,), where m, denotes the largest number on any of the first r balls. Thus, not only is
 complete recall allowed, but the actual ranks of the balls are known as they are drawn.
 This puts the paper rather far from a recognizable secretary problem and it will not be
 described further here.

 9 Full and partial information

 As mentioned in ? 1.2, the origins of the secretary problem lie with Cayley (1875), where
 values are observed sequentially from a known distribution. Gilbert & Mosteller call this
 the 'full information' problem since the observer knows at each stage as much as he can
 ever know about the next observation. In this sense the standard secretary problem can be
 called 'no information' as the observer is presented with values from a completely
 unknown distribution and he sees only their relative ranks and knows only that all rank
 orders are equally likely. An intermediate problem of 'partial information' occurs when
 observations are taken from a distribution of known form but containing one or more
 unknown parameters. A natural approach is to use Bayes theorem to update knowledge
 about these parameters at the same time as deciding whether to stop or continue.
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 Both these problems must be regarded as outside the scope of this review, so the reader
 is referred to the following papers for more details:

 (i) full information: Moser (1956), Guttman (1960), Karlin (1962), Gilbert &
 Mosteller (1966), Enns (1970), Sakaguchi (1973, 1976, 1978), Petrucelli (1982);

 (ii) partial information: Sakaguchi (1961) and DeGroot (1968) normal distribution,
 unknown mean; Campbell (1977) Dirichlet process; Bowerman & Koehler
 (1978) general distribution, one unknown parameter, sampling cost, complete
 recall; Petrucelli (1978) normal, exponential, inverse power location-scale
 families; Samuels (1978) and Stewart (1978) uniform, unknown endpoints.

 References

 Abdel-Hamid, A.R., Bather, J.A. & Trustrum, G.B. (1982). The secretary problem with an unknown number of
 candidates J. Appl. Prob. 19, 619-630.

 Bartoszynski, R. (1974). On certain combinatorial identities. Colloquium Mathematicum 30, 289-293.
 Bartoszynski, R. (1976). Some remarks on the secretary problem. Commentationes Mathematicae Prace

 Matematycz ne 19, 15-22.
 Bartoszynski, R. & Govindarajulu, Z. (1978). The secretary problem with interview cost. Sankhydl B 40, 11-28.
 Bissinger, B.H. & Siegel, C. (1963). Problem 5086. Am. Math. Mon. 70, 336.
 Bosch, A.J. (1964). Solution to problem 5086. Am. Math. Mon. 71, 329-330.
 Bowerman, B.L. & Koehler, A.B. (1978). An optimal policy for sampling from uncertain distributions. Comm.

 Statist. A 7, 1041-1051.
 Breiman, L. (1964). Stopping rule problems. In Applied Combinatorial Mathematics, Ed. by E.F. Beckenback,

 pp. 284-319. New York: Wiley.
 Campbell, G. (1977). The maximum of a sequence with prior information. Purdue University, Department of

 Statistics, Mimeograph series No. 485.
 Cayley, A. (1875). Mathematical questions and their solutions. Educational Times 22, 18-19.
 Chen, W.-C. & Starr, N. (1980). Optimal stopping in an urn. Ann. Prob. 8, 451-464.
 Chow, Y.S. & Robbins, H. (1963). On optimal stopping rules, Z. Wahr. 2, 33-49.
 Chow, Y.S., Moriguti, S., Robbins, H. & Samuels, S.M. (1964). Optimal selection based on relative rank (the

 "secretary problem"), Israel J. Math. 2, 81-90.
 Chow, Y.S., Robbins, H. & Siegmund, D. (1971). Great Expectations: The Theory of Optimal Stopping. Boston:

 Houghton Mifflin Co.
 Cowan, R. & Zabczyk, J. (1978). An optimal selection problem associated with the Poisson process. Theory

 Prob. Applic. 23, 584-592.
 DeGroot, M.H. (1968). Some problems of optimal stopping. J. R. Statist. Soc. B 30, 108-122.
 Dynkin, E.B. (1963). The optimal choice of the stopping moment for a Markov process. Dokl. Akad. Nauk.

 SSSR 150, 238-240.
 Enns, von E.G. (1970). The optimum strategy for choosing the maximum of N independent random variables.

 Unternehmensforschung 14, 89-96.
 Frank, A.Q. & Samuels, S.M. (1980). On an optimal stopping problem of Gusein-Zade. Stoch. Processes. Applic.

 10, 299-311.
 Gardner, M. (1960a). Mathematical games. Scientific American 202 (2), 152.
 Gardner, M. (1960b). Mathematical games. Scientific American 202 (3), 178-179.
 Gianini, J. (1976). The secretary problem with random number of individuals. Unpublished.
 Gianini, J. (1977). The infinite secretary problem as the limit of the finite problem. Ann. Prob. 5, 636-644.
 Gianini, J. & Samuels, S.M. (1976). The infinite secretary problem. Ann. Prob. 4, 418-432.
 Gianini-Pettitt, J. (1979). Optimal selection based on relative ranks with a random number of individuals. Adv.

 Appl. Prob. 11, 720-736.
 Gilbert, J. & Mosteller, F. (1966). Recognizing the maximum of a sequence. J. Am. Statist. Assoc. 61, 35-73.
 Goldys, B. (1978). The secretary problem-the case with memory for one step. Demonstratio Mathematica 11,

 789-799.

 Govindarajulu, Z. (1975). The secretary problem: optimal selection with interview cost. Technical report 82,
 University of Kentucky.

 Gusein-Zade, S.M. (1966). The problem of choice and the optimal stopping rule for a sequence of independent
 trials. Theory Prob. Applic. 11, 472-476.

 Guttman, I. (1960). On a problem of L. Moser. Can. Math. Bull. 3, 35-9.
 Henke, M. (1970). Sequentialle Auswahlprobleme bei Unsicherheit. Meisenheim: Anton Hain Verlag.
 Henke, M. (1973). Expectations and variances of stopping variables in sequential selection processes. J. Appl.

 Prob. 10, 786-806.

 Irle, A. (1980). On the best choice problem with random population size. Z. fiir Operations Research 24, 177-190.

This content downloaded from 132.64.72.25 on Fri, 18 May 2018 15:30:02 UTC
All use subject to http://about.jstor.org/terms



 206 P.R. FREEMAN

 Irle, A. & Schmitz, N. (1979). Minimax strategies for discounted secretary problems. Operat. Res. Verfahren. 30,
 77-86.

 Karlin, S. (1962). Stochastic models and optimal policy for selling an asset. Chapter 9 of Studies in Applied
 Probability and Management Science, Ed. by K. Arrow, S. Karlin and W. Scarf, pp. 148-158. Stanford
 University Press.

 Lindley, D.V. (1961). Dynamic programming and decision theory. Appl. Statist. 10, 39-52.
 Lorenzen, T. J. (1978). Generalising the secretary problem. Adv. Appl. Prob. 11, 384-396.
 Lorenzen, T. J. (1981). Optimal stopping with sampling cost: the secretary problem. Ann. Prob. 9, 167-172.
 Moser, L. (1956). On a problem of Cayley. Scripta Mathematica 22, 289-292.
 Mucci, A.G. (1973a). Differential equations and optimal choice problems. Ann. Statist. 1, 104-113.
 Mucci, A.G. (1973b). On a class of secretary problems. Ann. Prob. 1, 417-427.
 Nikolaev, M.L. (1977). On a generalisation of the best choice problem. Theory Prob. Applic. 22, 187-190.
 Petrucelli, J.D. (1978). Some best choice problems with partial information. Unpublished thesis, Worcester

 Polytechnic Institute.
 Petrucelli, J.D. (1981). Best-choice problems involving uncertainty of selection and recall of observations. J.

 Appl. Prob. 18, 415-425.
 Petrucelli, J.D. (1982). Full-information best-choice problems with recall of observations and uncertainty of

 selection depending on the observation. Adv. Appl. Prob. 14, 340-358.
 Presman, E.L. & Sonin, I.M. (1972). The best choice problem for a random number of objects. Theory Prob.

 Applic. 17, 657-668.
 Rasche, M. (1975). Allgermeine Stopprobleme. Technical report, Institut fiir Mathematische Statistik,

 Universitdit Miinster.

 Rasmussen, W.T. (1972). Optimal choosing problems. Ph.D. Thesis, Dept of Operations Research, Stanford,
 California.

 Rasmussen, W.T. (1975). A generalised choice problem. J. Optimization Theory Applic. 15, 311-325.
 Rasmussen, W.T. & Pliska, S.R. (1976). Choosing the maximum from a sequence with a discount function. Appl.

 Math. Optimization 2, 279-289.
 Rasmussen, W.T. & Robbins, H. (1975). The candidate problem with unknown population size. J. Appl. Prob.

 12, 692-701.
 Rubin, H. (1966). The "secretary" problem (Abstract). Ann. Math. Statist. 37, 544.
 Rubin, H. & Samuels, S.M. (1977). The finite memory secretary problem. Ann. Prob. 5, 627-635.
 Sakaguchi, M. (1961). Dynamic programming of some sequential sampling design. J. Math. Anal. Applic. 2,

 446-466.

 Sakaguchi, M. (1973). A note on the dowry problem. Rep. Stat. Appl. Res., JUSE 20, 11-17.
 Sakaguchi, M. (1976). Optimal stopping problems for randomly arriving offers. Math. Japonicae 21, 201-217.
 Sakaguchi, M. (1978). Dowry problems and OLA policies. Rep. Stat. Appl. Res., JUSE 25, 124-128.
 Sakaguchi, M. (1979). A generalised secretary problem with uncertain employment. Math. Japonica 23,

 647-653.

 Samuels, S.M. (1978). Minimax stopping rules when the distribution is uniform with unknown endpoints.
 Technical report 523, Department of Statistics, Purdue University.

 Smith, M.H. (1975). A secretary problem with uncertain employment. J. Appl. Prob. 12, 620-624.
 Smith, M.H. & Deely, J.J. (1975). A secretary problem with finite memory. J. Am. Statist. Assoc. 70, 357-361.
 Stewart, T.J. (1978). Optimal selection from a random sequence with learning of the underlying distribution. J.

 Am. Statist. Assoc. 73, 775-780.
 Stewart, T.J. (1981). The secretary problem with an unknown number of options. Oper. Res. 29, 130-145.
 Tamaki, M. (1979a). Recognizing both the maximum and the second maximum of a sequence. J. Appl. Prob. 16,

 803-812.

 Tamaki, M. (1979b). A secretary problem with double choices. J. Oper. Res. Soc. Japan. 22, 257-264.
 Yang, M.C.K. (1974). Recognising the maximum of a random sequence based on relative rank with backward

 solicitation. J. Appl. Prob. 11, 504-512.

 Resume

 Ce r6sum6 trace le d6veloppement de's son origine pendant la premiere periode des annees 60 de ce qu'on
 appelle le probt6me du secr6taire. Ii passe en revue tous les travaux sur ce problZ'me et ses extensions qui ont
 d6jai 6t6 publi6s.

 [Paper received August 1982, revised January 1983]
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