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 Statistical Science

 1989, Vol. 4, No. 3, 282-296

 Who Solved the Secretary Problem?
 Thomas S. Ferguson

 Abstract. In Martin Gardner's Mathematical Games column in the February
 1960 issue of Scientific American, there appeared a simple problem that has

 come to be known today as the Secretary Problem, or the Marriage Problem.
 It has since been taken up and developed by many eminent probabilists and
 statisticians and has been extended and generalized in many different
 directions so that now one can say that it constitutes a "field" within
 mathematics-probability-optimization. The object of this article is partly
 historical (to give a fresh view of the origins of the problem, touching upon
 Cayley and Kepler), partly review of the field (listing the subfields of recent
 interest), partly serious (to answer the question posed in the title), and
 partly entertainment. The contents of this paper were first given as the
 Allen T. Craig lecture at the University of Iowa, 1988.

 Key words and phrases: Secretary problem, marriage problem, search prob-
 lem, relative ranks, stopping times, minimax rules.

 1. INTRODUCTION

 In the late 1950's and early 1960's there appeared a
 simple, partly recreational, problem known as the

 secretary problem, or the marriage problem, or the

 dowry problem, that made its way around the mathe-
 matical community. The problem has a certain appeal.

 It is easy to state and has a striking solution. It

 was immediately taken up and developed by certain
 eminent probabilists and statisticians, among them
 Lindley (1961), Dynkin (1963), Chow, Moriguti, Rob-

 bins and Samuels'(1964), and Gilbert and Mosteller
 (1966). Since that time, the problem has been ex-

 tended and generalized in many different directions
 so that now one can say that it constitutes a "field" of

 study within mathematics-probability-optimization.
 One can see from the review paper by Freeman (1983)
 how extensive and vast the field has become; more-
 over, the field has continued its exponential growth in
 the years since that paper appeared.

 One main objective of the present article is histori-
 cal, to review the history of the problem with the aim
 of determining who was the first to solve the secretary
 problem. The historical review may take us far, but I

 think you will find the journey interesting, and the
 conclusion surprising.

 2. STATEMENT OF THE PROBLEM

 The reader's first reaction to the title might well be

 to ask, "Which secretary problem?". After all, as I
 have just implied, there are many variations on the

 problem. The secretary problem in its simplest form
 has the following features.

 1. There is one secretarial position available.
 2. The number n of applicants is known.
 3. The applicants are interviewed sequentially in

 random order, each order being equally likely.
 4. It is assumed that you can rank all the applicants

 from best to worst without ties. The decision to
 accept or reject an applicant must be based only
 on the relative ranks of those applicants inter-
 viewed so far.

 5. An applicant once rejected cannot later be re-
 called.

 6. You are very particular and will be satisfied with
 nothing but the very best. (That is, your payoff
 is 1 if you choose the best of the n applicants and
 O otherwise.)

 This basic problem has a remarkably simple solu-
 tion. First, one shows that attention can be restricted
 to the class of rules that for some integer r > 1 rejects
 the first r - 1 applicants, and then chooses the next
 applicant who is best in the relative ranking of the
 observed applicants. For such a rule, the probability,
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 /0(r), of selecting the best applicant is 1/n for r = 1,
 and, for r > 1,

 n= E Jth applicant is best
 j=nr) \ and you select it (2.1) J=r

 j=r \fl/- 11 ( n j=rJ

 The optimal r is the one that maximizes this proba-
 bility. For small values of n, the optimal r can easily
 be computed. Of interest are the approximate values
 of the optimal r for large n. If we let n tend to infinity

 and write x as the limit of r/n, then using t for j/n
 and dt for 1/n, the sum becomes a Riemann approxi-
 mation to an integral,

 (2.2) ( i)j( 1)(n)

 - x f (-) dt = -x log(x).

 The value of x that maximizes this quantity is easily
 found by setting the derivative with respect to x equal
 to zero and then solving for x. When this is done we
 find that

 (2.3) optimal x = lle = .367879 *.. , and
 optimal probability = l/e.

 Thus for large n, it is approximately optimal to wait
 until about 37% of the applicants have been inter-
 viewed and then to select the next relatively best one.
 The probability of success is also about 37%.

 This derivation may seem a little loose, but it gives
 the right answer. For a lucid presentation of these and
 related results, see the basic paper of Gilbert and
 Mosteller (1966).

 3. HISTORICAL BACKGROUND

 There is some obscurity as to the origins of this
 problem. It seems to be generally agreed among work-
 ers in the field that the first statement of the problem
 to appear in print occurred in the February 1960

 ,column of Martin Gardner in Scientific American,
 where it is attributed to Fox and Marnie. A solution
 to the problem is outlined in the March 1960 issue of
 Scientific American and attributed to Moser and
 Pounder. In 1963, it appeared as a problem in The
 American Mathematical Monthly contributed by Bis-
 singer and Siegel (1963); in 1964, a solution appeared
 due to Bosch. But Mosteller learned of the problem in
 1955 from Andrew Gleason, "who claimed to have
 heard it from another," (Gilbert and Mosteller, 1966).
 Herb Robbins recalls discussing the problem in 1953-
 54 at Columbia University, and Merrill Flood recalls
 presenting a version of the problem that he called the

 fiance problem at a conference on mathematical prob-
 lems in logistics held at George Washington Univer-
 sity in January 1950 (personal communication, 1988).
 I personally remember working on extensions of the
 problem in the summer of 1959. In any case, many

 people knew of the problem by the time it appeared
 in print.

 Lindley (1961) seems to be the first to solve the
 problem in a scientific journal. He extends the

 problem to an arbitrary utility based on the rank
 of the applicant selected, and considers in particular

 the problem of minimizing the expected rank of the
 applicant selected, rank 1 being best. However, the dif-
 ficult problem of finding the asymptotic, for large n,

 optimal strategies and expected rank was left open,
 and finally solved neatly by Chow, Moriguti, Robbins
 and Samuels (1964). Dynkin (1963) considers the
 problem as an application of the theory of Markov

 stopping times, and shows that, properly interpreted,
 the problem is monotone so that the one-stage look-
 ahead rule is optimal.

 Then, in 1966, came the basic paper of Gilbert and

 Mosteller, with elegant derivations and extensions in
 a number of important directions. In particular, they

 allow r choices to obtain the best; they consider the
 problem of obtaining the best or the next best; they

 treat the "full-information" case, in which one is al-
 lowed to observe the actual values of the applicants

 (presumed to be chosen independently from a given

 distribution), for both the best-choice problem and for
 the minimum-rank problem; they analyze some game
 theoretic versions of the problem; etc. This paper,
 more than the others, foreshadowed the explosion of
 ideas, generalizations, and effort that would impact
 this area starting in 1972 and that continues strongly
 today. Some of these contributions will be mentioned
 in Section 5.

 This, briefly, is the official early history of the

 secretary problem. Since we are to attempt to discover
 who first solved this problem, we shall, as is customary
 in historical papers, proceed backward in time, looking
 for the germ of the idea hidden in forgotten literature.
 The first possibility occurs in the work of Arthur
 Cayley.

 4. CAYLEY'S PROBLEM

 The distinguished English mathematician, Arthur

 Cayley (1821-1895), is perhaps best known for his
 seminal work in the theory of algebraic invariants. He
 was also one of the most prolific mathematicians the
 world has ever known. His collected works contain

 some 966 papers touching on many subjects in math-
 ematics, theoretical dynamics and astronomy. Paper
 #705 contains some 50 pages of problems and solutions
 that Cayley submitted to the Educational Times from
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 1871 to 1894. One of these problems Cayley (1875), is

 as follows:

 4528. (Proposed by Professor Cayley) A lottery is
 arranged as follows: There are n tickets repre-

 senting a, b, c, ... pounds respectively. A person
 draws once; looks at his ticket; and if he pleases,
 draws again (out of the remaining n - 1 tickets);

 and so on, drawing in all not more than k times;
 and he receives the value of the last ticket drawn.

 Supposing that he regulates his drawings in the
 manner most advantageous to him according to
 the theory of probabilities, what is the value of
 his expectation?

 From the "Solution by the Proposer," we see that

 Cayley believes it to be understood that k, n, and the
 a, b, c, ... are known numbers. (Note that here k,
 rather than n, represents the total number of draw-
 ings.) He solves the problem by what is now known

 as the method of backward induction of dynamic
 programming. As an example, he takes n = 4, and

 a, b, c, d = 1, 2, 3, 4, and finds for k = 1, 2, 3, 4, the

 values of the most advantageous expectation to be
 10/4 38/12, 85/24, 4 resp.

 Cayley's problem was resurrected from oblivion by

 Moser (1956), who also reformulated the problem in a
 neater guise which may be viewed as an approximation
 to the Cayley problem when n is very large and a, b,

 c, ... are 1, 2, ..., n: You observe, sequentially,
 random variables X1, ... , Xk known to be iid from a
 uniform distribution on the interval (0, 1); if you stop

 after observing Xj, then you receive Xj as your reward.
 The optimal rule, as found by Moser, is to stop when
 there are m observations left to be observed if the
 value of the present observation is greater than Em,

 where the Em are defined recursively by Eo = 0 and
 Em+1 = (1 - E2)/2. The corresponding equations are
 discussed in Guttman (1960) for the normal distribu-
 tion, in Karlin (1962) for the exponential distribution
 and in Gilbert and Mosteller (1966) for the inverse
 power distribution.

 Although there are strong points of similarity be-

 tween Cayley's problem and the secretary problem,
 there is one important difference. The payoff is not
 one or zero depending on whether you select the best
 or not; it is a numerical quantity depending on the
 intrinsic value of the object selected. This difference
 plays a big role in the feeling of the problem and has
 led to a class of problems, called variously the house
 hunting problem, the problem of selling an asset,
 or the search problem, with a literature as large as
 for the secretary problems. The basic problem is the
 Cayley-Moser problem with an infinite horizon, with
 the payoff modified to make certain that one will wish
 to stop in a finite time. For example, Sakaguchi (1961)

 and Chow and Robbins (1963): Random variables X1,

 X2 * ... are observed sequentially at a cost of c > 0 per

 observation; if you stop after observing X,, then you
 receive Xn - nc. If recall of past observations is
 allowed, the payoff for stopping after observing Xn is
 max(X1, ..., XX) - nc; such problems were treated by
 MacQueen and Miller (1960), Derman and Sacks
 (1960) and Chow and Robbins (1961). In Karlin
 (1962), the problem is solved with a discount rather
 than a cost. See DeGroot (1970) for a fuller account
 of these developments.

 This class of problems forms a rather distinct set of
 problems that is still being confused with the secretary
 problems. Since there are so many variations of the

 basic secretary problem (each of the 6 conditions listed
 in Section 2 has been modified by at least one author),

 I think it is worthwhile to try to define what a secre-
 tary problem is. My definition is: A secretary problem

 is a sequential observation and selection problem in
 which the payoff depends on the observations only
 through their relative ranks and not otherwise on their
 actual values.

 With this definition then, Cayley's problem is not
 even a secretary problem. We must look elsewhere to

 see who solved the secretary problem. Proceeding far-
 ther back in time, we come to the first practical
 application I could find of these sequential observation
 and selection techniques: the selection of a wife by
 Johannes Kepler.

 5. KEPLER'S PROBLEM

 When the celebrated German astronomer, Johannes
 Kepler (1571-1630), lost his first wife to cholera in
 1611, he set about finding a new wife using the same
 methodical thoroughness and careful consideration of

 the data that he used in finding the orbit of Mars to
 be an ellipse. His first, not altogether happy, marriage
 had been arranged for him, and this time he was
 determined to make his own decision. In a long letter
 to a Baron Strahlendorf on October 23, 1613, written
 after he had made his selection, he describes in great
 detail the problems he faced and the reasons behind
 each of the decisions he made. He arranged to inter-
 view and to choose from among no fewer than eleven
 candidates for his hand. The process consumed much
 of his attention and energy for nearly 2 years, what
 with the investigations into the virtues and drawbacks
 of each candidate, her dowry, negotiations with her
 parents, natural hesitations, the advice of friends, etc.
 The book of Arthur Koestler (1960) contains an
 entertaining and insightful exposition of the process.
 The book of Carola Baumgardt (1951) contains much
 supplementary information.

 Suffice it to say that of the eleven candidates inter-
 viewed, Kepler eventually decided on the fifth. It may
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 be noted that when n = 11, the function 0n(r) of
 (2.1) takes on its maximum value when r = 5. Perhaps,
 if Kepler had been aware of the theory of the secretary
 problem, he could have saved himself a lot of time and
 trouble.

 Of course, in all practical applications of theoretical
 results, the assumptions are never exactly satisfied,

 and in the present instance this is especially true as
 we can see from Kepler's letter. For example, after
 interviewing candidate number 5 and being strongly
 attracted to her, Kepler listened to the advice of
 friends who were concerned with her lack of high
 rank, wealth, parentage and dowry (she was an or-

 phan), and who persuaded him to propose to number
 4. Thus, clearly Kepler thought he could recall past

 applicants in violation of assumption 5 of Section 2.
 Certainly, Kepler would have been interested in the
 papers of Yang (1974), Petruccelli (1981, 1984), Rose
 (1984), Ferenstein and Enns (1988) and others, who
 allow backward solicitation with a cost or with a
 probability q of being accepted. The probability q is
 not 1 in Kepler's case since candidate number 4 turned
 him down. He had waited too long.

 That Kepler went on after his failure with number
 4 shows that he was not just interested in getting the
 best (assumption 6 of Section 2). Perhaps he was
 minimizing the expected rank or some other utility

 function, in which case the papers of Chow, Moriguti,
 Robbins and Samuels (1964), Mucci (1973), Lorenzen
 (1979), Frank and Samuels (1980), etc., would have
 interested him. Since he had been married before, it
 is unrealistic to assume that he knew nothing about
 women (assumption 4 of Section 2); he would have
 enjoyed the full-information problem of Gilbert and
 Mosteller (1966) or Tamaki (1986). But it is also
 unreasonable to assume that he knew everything
 about women (who does?), so the models with partial
 information and learning of Stewart (1978), Samuels
 (1981), Campbell and Samuels (1981) or Campbell
 (1982) are more to the point.

 On the other hand, he actually interviewed all 11
 candidates and could have gone on. Perhaps he was
 expecting a random number of available candidates
 (violating condition 2 of Section 2), in which case he
 would have enjoyed reading the papers of Presman
 and Sonin (1972), Gianini-Pettitt (1979), Abdel-
 Hamid, Bather and Trustrum (1982), and Bruss and
 Samuels (1987). Or perhaps there was a cost of obser-
 vation as in Bartoszynski and Govindarajulu (1978),
 Lorenzen (1981) or Samuels (1985) or a discount
 factor as in Rasmussen and Pliska (1976). He would
 certainly be interested in the random arrival models
 of Sakaguchi (1976, 1986), Cowan and Zabczyk (1978)
 and Bruss (1987), in the game theoretic models of
 Presman and Sonin (1975), Fushimi (1981) and Enns
 and Ferenstein (1987), and in the multiple criteria

 formulation of Stadje (1980), Gnedin (1983), Berezov-
 skiy, Baryshnikov and Gnedin (1986) or Samuels and
 Chotlos (1986). Possibly, Kepler was concerned with
 the actual value of his bride and not just with her
 ranking among the other candidates. This would make
 it not a secretary problem at all, but a stopping-rule
 problem more like Cayley's problem or the search
 problem discussed in the previous section.

 It is clear that much more research needs to be done
 to clarify which of these problems Kepler was actually
 solving. Whichever one it was, there can be no doubt
 that the outcome was favorable for him. His new wife,
 whose education, as he says in his letter, must take

 the place of a dowry, bore him seven children, ran his
 household efficiently, and seems to have provided the

 necessary tranquil homelife for his erratic genius to
 flourish.

 6. THE GAME OF GOOGOL

 Let us return to the question: Of which of the many

 different versions of the secretary problem am I trying
 to find the solver? As historians, we should take as
 the secretary problem, the problem as it first appeared
 in print, in Martin Gardner's February 1960 column
 in Scientific American, where it was called the game
 of googol and described as follows.

 Ask someone to take as many slips of paper as
 he pleases, and on each slip write a different
 positive number. The numbers may range from
 small fractions of 1 to a number the size of a
 googol (1 followed by a hundred 0's) or even
 larger. These slips are turned face down and shuf-
 fled over the top of a table. One at a time you

 turn the slips face up. The aim is to stop turning
 when you come to the number that you guess to
 be the largest of the series. You cannot go back
 and pick up a previously turned slip. If you turn
 over all slips, then of course you must pick the
 last one turned.

 The astute reader may notice that this is not the
 simple form of the secretary problem described in
 Section 2. The actual values of the numbers are re-
 vealed to the decision maker in violation of condition
 4. Also, there is this "someone" who chooses the
 numbers, presumably to make your problem of select-
 ing the largest as difficult as possible. The game of
 googol is really a two-person game.

 This raises two questions. First, can you guarantee

 a higher probability of selecting the largest number if
 you allow your decision rule to depend on the actual
 values of the numbers? In other words, does the stated
 solution give the lower value of the game? Second, if
 you are told how this "someone" is choosing the num-
 bers to place on the slips, can you now guarantee a
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 286 T. S. FERGUSON

 higher probability of selecting the largest number? In

 other words, does the value of the game exist, and can
 we find optimal or c-optimal strategies for the se-
 quence chooser? These questions were not addressed

 in the solution presented in Scientific American in

 March 1960.

 The statement of the problem as it appeared in The
 American Mathematical Monthly in 1963 is much the

 same, but somewhat more nebulous since you are not
 told where the numbers come from. Perhaps it is a
 game against nature, so the second question above
 does not arise. In any case, the solution presented for
 the problem in 1964 contains the same oversight.

 Those distinguished statisticians who worked on

 the secretary problem in the 1960's were more careful
 in their statements of the problem in specifying what
 information could be used in the decision rule, but
 none of them attacked the above problem. Therefore,
 to see who first solved the problem, we must proceed
 into the 1970's and beyond.

 Suppose you were this "someone" who must choose
 the numbers to write on the slips. How would you go
 about choosing the numbers to make it as difficult as
 possible for me to obtain the largest? You could not
 just choose the numbers 1, 2, *.., n, because then I
 could wait until the number n appeared and thus
 obtain the largest number with probability 1. You
 could not just choose them iid from some fixed distri-
 bution, because this would lead to the full-information
 case solved by Gilbert and Mosteller (1966), who
 showed that I can obtain the largest number with
 probability at least 0.58016 ... , which is the limiting
 value for large n. So, you must choose the numbers in
 some dependent fashion. But you might as well choose
 them to be an exchangeable process since the numbers
 are put in random order anyway before being shown
 to me. Thus, you are drawn to the partial information
 models of Stewart (1978), Petruccelli (1980) and
 Samuels (1981).

 7. PARTIAL INFORMATION MODELS

 Let X1, * ... Xn denote the values of the numbers
 on the slips. These may be considered as the parame-
 ters of our statistical problem. We want to find a prior

 distribution for X1, ... , Xn, with respect to which the
 Bayes rule is the usual optimal rule based on the

 relative ranks of the Xj.
 In the paper of Stewart (1978), the Xj are chosen

 iid from a uniform distribution on the interval (a, f),
 denoted by U(a, f), and (a, d) is chosen from the
 three-parameter Pareto distribution. Specifically,

 (7.1) (a, O) is Pa(k, log uo), and
 X1,.., Xn, given (ae, O3, are iid U(ae, f3,

 where the three-parameter Pareto distribution, Pa(k,

 lo, uo) with k > 0 and 1l < uo, is the distribution with
 density

 g(ae,: kg log uo)

 (7.2) = k(k + l)(uo - lo)"
 (fa)k?+2 I(< ,u< )

 where I represents the indicator function. This is a

 conjugate family of distributions for the uniform dis-

 tributions, and the posterior distribution of (a, )

 given X1, .. *, Xj is also Pareto,

 (a , 3) , given X1, * .., Xj,

 is Pa(k + j, 1j, uj), where

 (7.3) = minJ1o,X1,...,Xj and

 Uj= maxfuo, X1, *.., Xjl.

 Thus, one can interpret the prior information as being
 equivalent to a sample of size k from a uniform distri-

 bution with a minimum of lo and a maximum of uo.
 Stewart obtained a rather striking result for this

 prior distribution of the Xj, as follows. First, the payoff
 is changed so that you win only if you stop on the

 largest Xj and if that Xj is greater than uo. Then, one
 shows that

 P (Xi Un~ I Xis* Xi
 (7.4) k + j + 1

 k + n + 1(24 = uj)

 This implies that attention can be restricted to rules
 that depend only on the relative ranks of the obser-
 vations including uo. In fact, the problem becomes
 equivalent to the secretary problem of Section 2 with
 n + k + 1 applicants, in which you start with k + 1
 applicants already rejected, the largest having value
 uO. In particular, the Bayes rule among rules that use
 all the information is the rule that rejects the first
 r'- 1 applicants, and selects the next applicant who
 is relatively best (and better than uo), where r' =
 max(1, r - k - 1) and r is the optimal value of r for
 the secretary problem of Section 2 with n + k + 1
 applicants. In addition, for all values of k, the proba-
 bility of win under an optimal rule tends to l/e as

 n -* oo! Since for sufficiently large n, the maximum Xj
 will be greater than uo with probability close to 1, this
 means that given any e > 0, there is an N and a
 distribution of the form (7.1) such that for n > N if

 (a, O) is chosen from this distribution and then the Xj
 are chosen as from a uniform distribution on (a, d),
 the probability of win in the game of googol is less
 than l/e + e.

 Thus Stewart has solved googol asymptotically for
 n large. Unfortunately, for fixed finite n, one cannot

 find, for all e > 0, e-optimal distributions for choosing
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 the Xj among the distributions he suggests. We must
 look further. The paper of Petruccelli (1980) considers

 some other distributions for the Xj. If the Xj are
 uniform on the interval (0 - 0.5, 0 + 0.5), then the

 best invariant stopping rule gives a probability of win

 asymptotic to 0.43517... as n -* oo. If the distribu-
 tions are normal with mean g and variance 1, the
 situation is even worse (from our point of view).
 The best invariant rule gives a probability of win
 asymptotic to the full-information case, namely,
 0.58016.--. Asymptotically, you might as well tell

 your opponent what g you are using.
 Finally, we come to the paper of Samuels (1981),

 who extends the results of Stewart. Samuels shows

 that in the model where the Xj are chosen from the
 uniform distribution on (a, ,B), the usual rule (the
 optimal rule based on relative ranks) is minimax for
 each n. Since the usual rule is an equalizer rule (it
 gives the same probability of success no matter how

 the Xj are chosen), we see that it is minimax against
 general, nonparametric alternatives as well. In other
 words, the usual solution achieves the lower value of
 the game. Thus, I believe that Steve Samuels deserves
 credit for having solved (the more difficult half of) the
 secretary problem as it appeared in The American
 Mathematical Monthly.

 However, this exhausts my search through the rel-
 evant literature. What can be said about the game
 of googol? I can finally give you my answer to the
 question in the title of this article. Who solved the
 secretary problem? Nobody.

 8. A RESOLUTION

 Let me hasten to apologize for this anticlimax, and
 to venture the opinion that the reason no one has
 solved this problem is that possibly no one was inter-
 ested in googol as a game, or perhaps realized there
 was a problem yet to be solved. To remedy the situa-
 tion, let us try to find the solution now. With the hint
 given by the paper of Stewart, it turns out not to be
 hard.

 I In fact, since we are considering only the best choice
 problem, we may consider a simpler class of distribu-
 tions than that of Stewart-the one-parameter uni-
 form and the two-parameter Pareto distributions.
 Thus, we take

 (8.1 0 is Pa(a, 1), and
 (8.1) X1, *.., Xn, given 0, are iid U(0, 0),

 where the two-parameter Pareto distribution, Pa(a,

 MO), is the distribution with density

 (8.2) g(0 I a, mo) = aiMa/0a+lI(0 > MO),

 where a > 0 and mo > 0. For simplicity, we take
 mO= 1. This class of Pareto distributions forms a

 conjugate prior for U(O, 0), and contains the posterior

 distribution of 0 given X1, * * *, Xj:

 0, given X1, ***, Xj, is Pa(a + j, mj),

 (8.3) where mj = max(mo, X1, *.., Xj).

 Let us pretend that we are playing a game of googol,
 I choosing the Xj and you choosing the stopping rule.
 For a given e > 0, I will choose the Xj according to
 (8.1), and find an a (sufficiently close to zero) so that

 you will win with a probability less than O5n + E, where
 O5n is the maximum probability you can guarantee
 using strategies that depend only on the relative ranks,
 On= maxr qn(r).

 In fact, I will give you an additional slight advantage

 and still keep your probability of success below 'On +
 e. I will say that you win if you stop at the largest Xj,
 or if all the Xj are no greater than 1. This will allow
 you to restrict attention to stopping rules that stop

 only at a relatively largest Xj that is greater than 1.
 The probability you win is

 (8.4) P(win) = P(all Xj c 1) + P(win*),

 where win* represents the event Imax X > 1 and you
 choose it}. The first term does not depend on your
 strategy and is easily computed:

 00

 P(all Xj < 1) = P(all Xj < 1 1 O)g(O I a, 1) do

 (8.5) 00
 = a J (1/0)n(1/o)a+1 dO

 = a/(n + a).

 Your problem is to maximize the second term of (8.4).
 First, we find the probability, conditional at stage j,

 that mj > 1 is already as large as it will get.

 P(Mi = Mn IXi, ... ,Xi)

 =E(P(Mi = Mn I a, Xi, * * Xj)J X1, .. * Xj)

 (8.6)

 = Jmj (mi/M)n-ig(O I a + j, mj) dO

 = (a + j)/(a + n)

 independent of X1, *.., Xj. This is an analog of
 Stewart's result (7.4). If you have a new candidate at

 stage j, that is if Xj = mji, it is optimal to select it if
 and only if

 a +j

 ae + n

 > P(win* with best strategy from stage j + 1 on).

 The right side of this inequality is a nonincreasing
 function of j, since any strategy available at stage j +
 2 is also available at stage j + 1. Since the left side of
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 the inequality is an increasing function ofj, an optimal
 rule may be found among rules of the form for some
 r - 1: reject the first -r - 1 applicants and accept the

 next applicant for which Xj = mj, if any.
 Using such a strategy, the probability of a win* may

 be computed as

 n

 P(win*) = E P(select j)P(j is best I select j).
 j=r

 The probability that j is best given you select it is just
 (8.6). The probability that you select j can be found
 using (8.6):

 P(select j) = P(mr1 = mjn1 and mj > mjr1)

 = a + r-1{ _a + j -1
 a +j- i \ -a +j!

 a + r-1

 (a + j - 1)(a + j)

 Combining these into (8.4) and letting 0n(r, a) denote
 the probability of a win, we find

 On(r, a) (a: + n) +( 1)jzr (a +- J1)

 Now, note that On(r, a) is continuous in a for a > 0,
 and that as a -O, n(r, a) -X-n(r) for all r= 1, ** *,
 n, where On(r) is given by (2.1). Hence, as a 0,

 maxr qn(r, a) -- maxr qn(r) = .n-

 Therefore, an c-optimal method of choosing the Xj is
 given by (8.1), where a = a(n, c) is chosen so that

 I maxr qn(r, ao) On I < e.

 This derivation may be considered an alternate
 proof of the minimaxity result of Samuels mentioned
 in Section 7. It is interesting to note that this result
 cannot be obtained using the distributions of (7.1).
 The optimal rule based on relative ranks is exactly
 Stewart's rule with k = -1; but k must be positive for
 (7.1) to be a distribution; hence, we cannot approxi-
 mate the case k = -1 with distributions. (In addition,
 the term corresponding to (8.5) does not go to zero.)
 If it seems strange that the distributions (7.1) were
 considered before the simpler distributions (8.1), the
 reason is that Stewart and Samuels treated in their
 papers problems with more general payoffs, not just
 the best choice problem, and needed a broader class
 of distributions. Unfortunately, (7.1) does not contain
 (8.1). If there is a moral to this, maybe it is that the
 simpler cases should always be examined first.

 Note Added in Proof

 Steve Samuels has sent me a copy of the book, Problems of Best
 Choice (in Russian) by B. A. Berezovskiy and A. V. Gnedin, 1984,
 Akademia Nauk, USSR, Moscow. This book is devoted solely to the

 secretary problem and its variations. It contains not only a review

 of the field but also a careful exposition and new information as

 well. In their discussion of the partial information model of Stewart,
 they use the prior distribution (8.1) and derive (8.6). However, this
 is only used to prove the asymptotic minimaxity result of Stewart.

 REFERENCES

 ABDEL-HAMID, A. R., BATHER, J. A. and TRUSTRUM, G. B. (1982).
 The secretary problem with an unknown number of candidates.
 J. Appl. Probab. 19 619-630.

 BARTOSZYNSKI, R. and GOVINDARAJULU, Z. (1978). The secretary
 problem with interview cost. Sankhya Ser. B 40 11-28.

 BAUMGARDT, CAROLA (1951). Johannes Kepler: Life and Letters.
 Philosophical Library, Inc., New York.

 BEREZOVSKIY, B. A., BARYSHNIKOV, Yu. M. and GNEDIN, A. V.

 (1986). On a class of best choice problems. Inform. Sci. 39
 111-127.

 BISSENGER, B. H. and SIEGEL, C. (1963). Advanced Problem 5086.
 Amer. Math. Monthly 70 336. (Solution by A. J. Bosch. 71
 (1964) 329-330.)

 BRUSS, F. T. (1987). On an optimal selection problem of Cowan
 and Zabczyk. J. AppL Probab. 24 918-928.

 BRUSS, F. T. and SAMUELS, S. M. (1987). A unified approach to a
 class of optimal selection problems with a random number of
 options. Ann. Probab. 15 824-830.

 CAMPBELL, G. (1982). The maximum of a sequence with prior
 information. Sequential Anal. 1 177-191.

 CAMPBELL, G. and SAMUELS, S. (1981). Choosing the best of the
 current crop. Adv. in Appl. Probab. 13 510-532.

 CAYLEY, A. (1875). Mathematical questions with their solutions.
 The Educational Times 23 18-19. See The Collected Mathe-
 matical Papers of Arthur Cayley 10 587-588 (1896). Cambridge
 Univ. Press, Cambridge.

 CHOW, Y. S., MORIGUTI, S., ROBBINS, H. and SAMUELS, S. M.
 (1964). Optimal selection based on relative rank (The "secre-
 tary" problem). Israel J. Math. 2 81-90.

 CHOW, Y. S. and ROBBINS, H. (1961). A martingale system theorem
 and applications. Proc. Fourth Berkeley Symp. Math. Statist.
 Probab. 1 93-104. Univ. California Press.

 CHOW, Y. S. and ROBBINS, H. (1963). On optimal stopping rules.
 Z. Wahrsch. verw. Gebiete 2 33-49.

 COWAN, R. and ZABCZYK, J. (1978). An optimal selection problem
 associated with the Poisson process. Theory Probab. Appl. 23
 584-592.

 DEGROOT, M. H. (1970). Optimal Statistical Decisions. McGraw-
 Hill, New York.

 DERMAN, C. and SACKS, J. (1960). Replacement of periodically
 inspected equipment. Naval Res. Logist. Quart. 7 597-607.

 DYNKIN, E. B. (1963). The optimum choice of the instant for
 stopping a Markov process. Soviet Math. Dokl. 4 627-629.

 ENNS, E. G. and FERENSTEIN, E. Z. (1987). On a multiperson time-
 sequential game with priorities. Sequential Anal. 6 239-256.

 FERENSTEIN, E. Z. and ENNS, E. G. (1988). Optimal sequential
 selection from a known distribution with holding costs. J. Amer.
 Statist. Assoc. 83 382-386.

 FRANK, A. Q. and SAMUELS, S. M. (1980). On an optimal stopping
 problem of Gusein-Zade. Stochastic Process. Appl. 10 299-311.

 FREEMAN, P. R. (1983). The secretary problem and its extensions-
 A review. Internat. Statist. Rev. 51 189-206.

 FUSHIMI, M. (1981). The secretary problem in a competitive situa-
 tion. J. Oper. Res. Soc. Japan 24 350-359.

 GARDNER, M. (1960). Scientific American Feb., Mar. (See also
 Martin Gardner's New Mathematical Diversions (1966) 35.
 Simon and Schuster, New York.)

 GIANINI-PErrIrr, J. (1979). Optimal selection based on relative
 ranks with a random number of individuals. Adv. in Appl.
 Probab. 11 720-736.

This content downloaded from 160.39.35.29 on Mon, 23 Sep 2019 02:08:52 UTC
All use subject to https://about.jstor.org/terms



 WHO SOLVED THE SECRETARY PROBLEM? 289

 GILBERT, J. and MOSTELLER, F. (1966). Recognizing the maximum

 of a sequence. J. Amer. Statist. Assoc. 61 35-73.

 GNEDIN, A. V. (1983). Effective stopping on a Pareto-optimal
 option. Avtomat. i Telemekh. 44 (3) 166-170. (In Russian).

 GUTTMAN, I. (1960). On a problem of L. Moser. Canad. Math. Bull.
 3 35-39.

 KARLIN, S. (1962). Stochastic models and optimal policy for selling

 an asset. In Studies in Applied Probability and Management
 Science (K. J. Arrow, S. Karlin and H. Scarf, eds.) 148-158.
 Stanford Univ. Press, Stanford, Calif.

 KOESTLER, A. (1960). The Watershed. A Biography of Johannes
 Kepler. Anchor Books, Garden City, NY.

 LINDLEY, D. V. (1961). Dynamic programming and decision theory.

 Appl. Statist. 10 39-51.

 LORENZEN, T. J. (1979). Generalizing the secretary problem. Adv.

 in Appl. Probab. 1 1 384-396.

 LORENZEN, T. J. (1981). Optimal stopping with sampling cost. Ann.
 Probab. 9 167-172.

 MACQUEEN, J. and MILLER, R. P., JR. (1960). Optimal persistence
 policies. Oper. Res. 8 362-380.

 MOSER, L. (1956). On a problem of Cayley. Scripta Math. 22
 289-292.

 MuccI, A. G. (1973). On a class of secretary problems. Ann. Probab.
 1 417-427.

 PETRUCCELLI, J. D. (1980). On a best choice problem with partial

 information. Ann. Statist. 8 1171-1174.

 PETRUCCELLI, J. D. (1981). Best-choice problems involving uncer-

 tainty of selection and recall of observation. J. Appl. Probab.
 18 415-425.

 PETRUCCELLI, J. D. (1984). Best-choice problems involving recall

 with uncertainty of selection when the number of observations

 is random. Adv. in Appl. Probab. 16 111-130.

 PRESMAN, E. L. and SONIN, I. M. (1972). The best-choice problem
 for a random number of objects. Theory Probab. Appl. 17
 657-668.

 PRESMAN, E. L. and SONIN, I. M. (1975). Equilibrium points in a

 game related to the best choice problem. Theory Probab. Appl.
 20 770-781.

 RASMUSSEN, W. T. and PLISKA, S. R. (1976). Choosing the maxi-

 mum from a sequlence with a discount function. Appl. Math.

 Optim. 2 279-289.

 ROSE, J. (1984). Optimal sequential selection based on relative

 ranks with renewable call options. J. Amer. Statist. Assoc. 79

 430-435.

 SAKAGUCHI, M. (1961). Dynamic programming of some sequential

 sampling design. J. Math. Anal. Appl. 2 446-466.

 SAKAGUCHI, M. (1976). Optimal stopping problems for randomly
 arriving offers. Math. Japon. 21 201-217.

 SAKAGUCHI, M. (1986). Best choice problems for randomly arriving

 offers during a random lifetime. Math. Japon. 31 107-117.

 SAMUELS, S. M. (1981). Minimax stopping rules when the under-

 lying distribution is uniform. J. Amer. Statist. Assoc. 76

 188-197.

 SAMUELS, S. M. (1985). A best-choice problem with linear travel

 cost. J. Amer. Statist. Assoc. 80 461-464.

 SAMUELS, S. M. and CHOTLOS, B. (1986). A multiple criteria
 optimal selection problem. In Adaptive Statistical Procedures

 and Related Topics (J. Van Ryzin, ed.) 62-78. IMS, Hayward,
 Calif.

 STADJE, W. (1980). Efficient stopping of a random series of partially

 ordered points. Multiple Criteria Decision Making. Theory and
 Application Lecture Notes in Econ. Math. Syst. 177 430-447.

 Springer, New York.
 STEWART, T. J. (1978). Optimal selection from a random sequence

 with learning of the underlying distribution. J. Amer. Statist.

 Assoc. 73 775-780.

 TAMAKI, M. (1986). A full-information best-choice problem with

 finite memory. J. Appl. Probab. 23 718-735.
 YANG, M. C. K. (1974). Recognizing the maximum of a sequence

 with backward solicitation. J. Appl. Probab. 1 1 504-512.

 Comment: Who Will Solve the Secretary
 Problem?
 Stephen M. Samuels

 Just like Johannes Kepler, who threw a new curve

 at the solar system, Tom Ferguson has given a dif-
 ferent slant to the Secretary Problem. To its many
 practitioners who ritually begin by saying "all that we

 can observe are the relative ranks," Ferguson (citing
 historical precedent), in effect, responds "let's not take
 that assumption for granted." The heart of his paper,
 as I see it, is the following Ferguson Secretary Problem:

 Given n, either find an exchangeable sequence of
 continuous random variables, X1, X2, *---, Xn, for
 which, among all stopping rules, r, based on the X's,

 sup P{XT = max(Xl, X2, XXn),

 is achieved by a rule based only on the relative ranks

 of the X's-or prove that no such sequence exists.

 Ferguson has come within epsilon of solving this
 problem. He has exhibited exchangeable sequences,
 for each n and e > 0, such that the best rule based
 only on relative ranks has success probability within
 e of the supremum. But he has left open the question
 of whether this supremum can actually be attained.

 For n = 2, the answer is easy; there is no such
 sequence. The following elementary argument, which

 Stephen M. Samuels is Professor of Statistics and
 Mathematics at Purdue University. His mailing ad-
 dress is: Department of Statistics, Mathematical Sci-

 ences Building, Purdue University, West Lafayette,
 Indiana 47907.
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